1: \(a\sqrt{a}-1=\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)\)
2: \(a+2\sqrt{a}+1=\left(\sqrt{a}+1\right)^2\)
3: \(a\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\)
1: \(a\sqrt{a}-1=\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)\)
2: \(a+2\sqrt{a}+1=\left(\sqrt{a}+1\right)^2\)
3: \(a\sqrt{a}+1=\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\)
phân tích đa thức sau thành nhân tử
a)\(a+4\sqrt{a}+4\)
b)a-7
c)\(\sqrt{a.b}-4\sqrt{a}+3\sqrt{b}-12\)
phân tích đa thức thành nhân tử
a, x - \(\sqrt{x}\)
b, 3x + 6\(\sqrt{x}\)
c, x+ 2\(\sqrt{x}\) + 1
d, 3x -5\(\sqrt{x}\) + 2
Phân tích đa thức thành nhân tử:
M= 7\(\sqrt{x-1}\) - \(\sqrt{x^3-x^2}\)+ x -1 với x\(\ge\)1
Rút gọn biểu thức
a)\(\frac{a-1}{\sqrt[3]{a^2}+\sqrt[3]{a}+1}\)\
b)\(\left(12\sqrt[3]{2}+\sqrt[3]{16}-2\sqrt[3]{2}\right)\left(5\sqrt[3]{4}-3\sqrt[3]{\frac{1}{2}}\right)\)
cho biểu thức \(P=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{\sqrt{a}}\right):\left(\frac{2a+\sqrt{a}-1}{1-a}+\frac{2a\sqrt{a}+a-\sqrt{a}}{1+a\sqrt{a}}\right)\)
a. rút gọn P KQ=\(\frac{1-\sqrt{a}+a}{\sqrt{a}}\)
b. tính P khi \(a=\frac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13-\sqrt{48}}}}}+1\) KQ =7/3
c. tìm x để P>x
lm hooj t câu c vs câu a,b, t lm hết r
bài 1: cho biểu thức: P=\(\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a để P nguyên
bài 2: cho biểu thức: P=\(\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a (a>8) để P nguyên
Phân tích các đa thức sau thành nhân tử
a) x2 - 7
b) x2 - \(2\sqrt{2}\) x +2
c) x2 + \(2\sqrt{13}\) x +13
Cho biểu thức A= \(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)
Rút gọn được \(\frac{a-1}{\sqrt{a}}\)
a, Tính giá trị của A khi a= 2\(\sqrt{2}+3\)
b, Tìm a để A = a-2
Rút gọn và tính giá trị biểu thức
a, \(\frac{x-11}{\sqrt{x-2}-3}\) x=23-12\(\sqrt{3}\)
b, \(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}\) với a=\(\sqrt{2}\)
c, \(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}}\) với a=7,25 và b=3,25
d, \(\sqrt{10a^2-4a\sqrt{10}+4}\) với a= \(\sqrt{\frac{2}{5}}+\sqrt{\frac{5}{2}}\)