a: \(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^2-1}{2x+1}\)
\(=\dfrac{2}{2x+1}\)
b: Để \(P=\dfrac{3}{x-1}\) thì \(\dfrac{3}{x-1}=\dfrac{2}{2x+1}\)
=>6x+3=2x-2
=>4x=-5
hay x=-5/4
a: \(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^2-1}{2x+1}\)
\(=\dfrac{2}{2x+1}\)
b: Để \(P=\dfrac{3}{x-1}\) thì \(\dfrac{3}{x-1}=\dfrac{2}{2x+1}\)
=>6x+3=2x-2
=>4x=-5
hay x=-5/4
Cho biểu thức:
P = \(\left(\dfrac{x+1}{3x^2+3x}+\dfrac{1-2x}{6x^2-3x}-1\right)\): \(\dfrac{1-x}{2x}\)
a) Rút gọn P
b) Tìm x ∈ Z đề P có giá trị nguyên
c) Tìm x để P ≤ 1
Cho biểu thứ :\(P:\left(\dfrac{x-1}{x-3}+\dfrac{2}{x-3}+\dfrac{x^2+3}{9-x^2}\right):\left(\dfrac{2x-1}{2x+1-1}\right)\)
a) Rút gọn biểu thức P
b) Tính giá trị của P biết \(\left|x+1\right|=\dfrac{1}{2}\)
c) Tìm x để \(P=\dfrac{x}{2}\)
d) Tìm giá trị nguyen của x để P có giá trị nguyên
P=\(\left(\dfrac{\text{3x^2+ 3x − 3}}{\text{x^2 + x − 2 }}+\dfrac{1}{x-1}+\dfrac{1}{x+2}-2\right):\dfrac{1}{x^2-1}\)
a,rút gọn P
b,tính P với x2-x-6=0
c,tìm x để p>0
P=\(\left(\dfrac{3\left(x+2\right)}{2x^2+8}-\dfrac{2x^2-x-10}{\left(x+1\right)\left[\left(x+1\right)^2-2x\right]}\right):\left(\dfrac{5}{x^2+1}+\dfrac{3}{2\left(x+1\right)}-\dfrac{3}{x-1}\right)\cdot\dfrac{2}{x-1}\)
a) rút gọn P
b)tìm tất cả các giá trị nguyên của x để P có giá trị là bội của 4
Cho biểu thức: P = \(\left(\dfrac{2}{x+1}-\dfrac{3}{x-1}-\dfrac{x+7}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
a) Rút gọn P
b) Tìm x đề P<0
P=\(\left(\dfrac{3x^2+3x-3}{x^2+x-2}+\dfrac{1}{x-1}+\dfrac{1}{x+2}-2\right):\dfrac{1}{x^2-1}\)
a,rút gọn P
b,tính P với x2-x-6=0
rút gọn
\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\)
\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\)
\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\)
Cho biểu thức: P =(\(\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3\)) : \(\dfrac{2-4x}{x+1}-\dfrac{3x-x^2+1}{3x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tính giá trị của M với \(\left|2x-5\right|=5\)
d) Với giá trị nào của x thì P = \(\dfrac{-1}{2}\)
e) Tìm các giá trị của x để M \(\ge-1\)
f) Tìm các giá trị x nguyên để \(\dfrac{1}{M}\) nhận giá trị nguyên
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)