Ta có:
\(P=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\)
\(P=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(P=1-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-...-\left(\dfrac{1}{99}+\dfrac{1}{99}\right)-\dfrac{1}{101}\)
\(P=1-0-0-...-0-\dfrac{1}{101}\)
\(P=1-\dfrac{1}{101}< 1\)