\(\overline{ab}+\overline{ba}\\=a\cdot10+b+b\cdot10+a\\=10a+b+10b+a\\=(10a+a)+(10b+b)\\=11a+11b\\=11\cdot(a+b)\)
Vì \(11\cdot(a+b)\vdots11\)
nên \(\overline{ab}+\overline{ba}\vdots11\).
\(\overline{ab}+\overline{ba}\\=a\cdot10+b+b\cdot10+a\\=10a+b+10b+a\\=(10a+a)+(10b+b)\\=11a+11b\\=11\cdot(a+b)\)
Vì \(11\cdot(a+b)\vdots11\)
nên \(\overline{ab}+\overline{ba}\vdots11\).
chứng tỏ rằng \(\overline{ab}+\overline{ba}\)CHIA HẾT CHO 11
1 chứng minh rằng\(\overline{ab}+\overline{cd}\) chia hết cho 11 thì\(\overline{abcd}\) chia hết cho 11
2 cho 2 só tự nhiên \(\overline{abc},\overline{deg}\) dều chia 11 dư 5 chứng minh rằng số \(\overline{abcdeg}\) chia hết cho 11
ai nhanh, đúng mk tc
\(\overline{3x4827}\) chia hết cho 11
\(\overline{x2013x}\) chia hết cho 88
Tìm \(\left(\overline{ab}+\overline{ba};33\right),\)biết rằng a + b không chia hết cho 3
a) Cho số A=\(\overline{111.....11}\)( 2012 chữ số 1 ). Hỏi A là hợp số hay số nguyên tố?
b) Chứng tỏ rằng nếu \(\overline{abc}+\overline{def}\)chia hết cho 37 thì \(\overline{abcdef}\)chia hết cho 37.
Xét số \(\overline{abc}\) = ab + bc + ca + ac + cb + ba
a, CMR \(\overline{abc}\) là số chẵn và \(\overline{abc}\) chia hết cho 11
b, Tìm số \(\overline{abc}\) biết a = 1
chứng minh rằng
\(\overline{ba}+\overline{ab}⋮11\)
Bài 1:Chứng minh rằng
a) \(\overline{ab}\) = 2.\(\overline{cd}\) → \(\overline{abcd}\) ⋮ 67
b) Cho \(\overline{abc⋮27}\) chứng minh rằng \(\overline{bca}\) ⋮ 27
Bài 2: Chứng minh rằng: Nếu \(\overline{ab}\) + \(\overline{cd}\) ⋮11 thì \(\overline{abcd}\) ⋮11
CM ab-ba chia het cho 9 a>b