Tìm n ∈∈ N để :
a) 3.n +2 ⋮ n - 1 b) n2 +2 .n +7 ⋮ n+2 c) n2 + 1 ⋮ n-1 d) n+8 ⋮ n+3 e) n+4 ⋮ n-1 g) 4.n-5⋮n-1
h) 12-n⋮ 8-n i) 20 ⋮ n k) 28 ⋮ n-1 l) 113+n ⋮ 7 m)113+n ⋮ 13 n) n2 + 2 .n +6 ⋮ n+4
a, \(3^{n+2}\) + \(3^{n+2}\) + \(3^n\) + \(2^n\) \(⋮\)10 ( n\(\in\)N*)
b, \(3^{n+3}\)+ \(3^{n+1}\) \(-\) \(2^{n+3}\) \(-\) \(2^{n+2}\) \(⋮\)6 ( n\(\in\)N*)
Chứng minh:
a) 1+ 2+ 3+ ...+( n- 1)+ n= \(\frac{n\left(n+1\right)}{2}\).
b) 1\(^2\)+ 2\(^2\)+ 3\(^2\)+...+( n- 1)\(^2\)+ n\(^2\)= \(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\).
c) 1\(^3\)+ 2\(^3\)+ 3\(^3\)+...+( n- 1)\(^3\)+ n\(^3\)= \(\left[\frac{n\left(n+1\right)}{2}\right]^2\).
Tìm STN n để phân số sau đây tối giản
a)\(\frac{3}{n}\);\(\frac{5}{n}\);\(\frac{12}{n}\)
b)\(\frac{n}{3}\);\(\frac{n}{5}\);\(\frac{n}{12}\)
c)\(\frac{5}{n+8}\);\(\frac{6}{n+9}\);\(\frac{7}{n+10}\)
CM : \(\forall\)n \(\in\)n N , n > 1
Ta có ; --
\(\frac{1}{n-1}\)- \(\frac{1}{n}\)> \(\frac{1}{n^2}\)> \(\frac{1}{n}\)- \(\frac{1}{n+1}\)
Tìm n để:
a/ 3\(⋮\)n
b/ 4\(⋮\)n+1
c/ n-2\(⋮\)3(n\(\le\)12
d/ n+8 \(⋮\)n+2
e/ 2n+1\(⋮\)n
f/ 12-n\(⋮\)8-n
g/ 113+n\(⋮\)7
Giúp tớ nha
Tìm các số nguyên m, n, p, q biết rằng:
m + n + p = 51; m + n + q = -19
m + p + q = 27; m + n + p + q =40
Chứng minh rằng :
a, \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)
b, \(\frac{1}{n\left(n+q\right)}=\frac{1}{q}\left(\frac{1}{n}-\frac{1}{n+q}\right)\)
So sánh các cặp phân số sau:
a) \(\frac{n}{n+1}\)và\(\frac{n+2}{n+3}\)\(\forall\)n \(\in\)\(ℕ\)
b) \(\frac{n}{2n+1}\)và \(\frac{2n+3}{4n+2}\)\(\forall\)n \(\in\)\(ℕ\)
c) \(\frac{n}{n+3}\)và\(\frac{2n+1}{3n+4}\)\(\forall\)n\(\inℕ\)
d) \(\frac{2017}{2020}\)và\(\frac{2018}{2019}\)
b)Tìm các số nguyên m, n, p, q biết rằng:
m + n + p = 51; m + n + q = -19
m + p + q = 27; m + n + p + q =40