1) \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)
\(a^2+x^2+2\sqrt{\left(a^2+x^2\right)\left(b^2+y^2\right)}+b^2+y^2\ge\left(a+b\right)^2+\left(x+y\right)^2\)
\(a^2+b^2+x^2+y^2+2\sqrt{\left(a^2+x^2\right)\left(b^2+y^2\right)}\ge a^2+b^2+x^2+y^2+2ab+2xy\)
\(\sqrt{\left(a^2+x^2\right)\left(b^2+y^2\right)}\ge ab+xy\)
\(\left(a^2+x^2\right)\left(b^2+y^2\right)\ge\left(ab+xy\right)^2\) (đúng với BĐT bunhiacopxki)
Dấu "=" ⇔ ....
2) \(\sqrt{1+a^2}+\sqrt{1+b^2}\ge\sqrt{\left(1+1\right)^2+\left(a+b\right)^2}\)
\(\sqrt{\left(1+1\right)^2+\left(a+b\right)^2}=\sqrt{4+1}=\sqrt{5}\)
Dấu "=" ⇔ ....
3) \(P=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{a^2}}\)
\(\ge\sqrt{\left(a+b\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2}\)
\(\ge\sqrt{1+\left(\dfrac{4}{a+b}\right)^2}\ge\sqrt{1+16}=\sqrt{17}\)
Dấu "=" ⇔ ....