\(4x^4y-4x^2y^3+12x^3y+12x^2y^2\)
\(=4x^2y\left(x^2-y^2+3x+3y\right)\)
\(=4x^2y\left(x-y-3\right)\left(x+y\right)\)
\(4x^4y-4x^2y^3+12x^3y+12x^2y^2\)
\(=4x^2y\left(x^2-y^2+3x+3y\right)\)
\(=4x^2y\left(x-y-3\right)\left(x+y\right)\)
Phân tích các đa thức sau thành nhân tử :
a. 4x3y - 12x2y3 - 8x4y3
b. 2x2 + 4x + 2 - 2y2
c. x3 - 2x2 + x - xy2
d. x(x - 2y) + 3(2y - x)
e. x4 + 4
f. 5x2 - 7x - 6
Phân tích đa thức thành nhân tử:
a) x^4 - y^4
b) 4x^2+12x+9
c) 36-12x+x^2
bài 5 tìm bậc của các đa thức sau
a,A=3x^2y^4+5x^3+xy-3x^2y^4
b,B=7x^3y.(-4x^2y^2)+17x^2y^3-4x^2y+28x^2y^4
c,C=5x^4y^2-7x^3y^2.(-2xy^2)-5x^4y^2+x^3-14x^4y^4
(8x^3y^3+x^2y^3-12x^3y^2 )/4x^2y^2
C=3x^2y-2xy^2+x^3y^3+3xy^2-2^2y-2x^3y^3
D=15x^2y^3+7y^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3
E=3x^5+1/3xy^4+3/4x^2y^3-1/2x^5y+2xy^4-x^2y^3
tìm bậc
Tìm giá trị lớn nhất A= -4x^2y^2 -4x^4y^2+20 E=-12x^2 -10y^2-18
Chứng minh rằng không tồn tại giá trị nào của x và y để 2 đat thức M và A có giá trị âm:
M=\(5xy^3+4x^2y^2-12x^3y\)
A=\(x\left(x^3+12x^2y-5y^3\right)\)
Tính giá trị của đa thức
A=4x^4+7x^2y^2+3y^4+5y^2 với x^2+y^2=5
B=9x^10-12x^7+6x^4+3x+2010 tại x thỏa mãn 3x^9-4x^6+2x^3+1=6
giải giúp mình nha
bài 1 : thu gọn đa thức , tìm bậc , hệ số cao nhất
A = 15x^2y^3 + 7x^2 - 8x^3y^2 - 12x^2 + 11x^3y^2 - 12x^2y^3
B = 3x^5y + \(\frac{1}{3}\)xy^4 + \(\frac{3}{4}\)x^2y^3 - \(\frac{1}{2}\)x^5y + 2xy^4 - x^2y^3
bài 2 : tính giá trị biểu thức
A = 3x^3y + 6x^2y^2 + 3xy^3 tại x = \(\frac{1}{2}\); y = -\(\frac{1}{3}\)
B = x^2y^2 + xy +x^3 + y^3 tại x = -1 ; y = 3
bài 3 : cho đa thức
P(x) = x^4 + 2x^2 + 1
Q(x) = x^4 + 4x^3 + 2x^2- 4x + 1
tính P(-1); P(\(\frac{1}{2}\)) ; q(-2);Q(1)
bài 4 : tìm hệ số a của đa thức M(x)= ax^2 + 5x - 3 , tại M (-3) = 0
bài 5 : tìm các hệ số a , b của đa thức f(x) = ax + b , biết f(2) = 3 ; f(-1) = 9