Nếu z = i là nghiệm phức của phương trình z 2 + a z + b = 0 với a , b ∈ ℝ thì a + b bằng
A. -1.
B. 2.
C. -2.
D. 1.
Nếu z = i là một nghiệm phức của phương trình z 2 + a z + b = 0 với a , b ∈ ℝ thì a + b bằng
A. -2
B. -1
C. 1
D. 2
Cho phương trình trên tập họp số phức z 2 + a z + b = 0 a , b ∈ ℝ . Nếu phương trình nhận số phức z = 1 + i làm một nghiệm thì a và b bằng.
A. a = -2, b = 2
B. a = 1, b = 5
C. a = 2, b = -2
D. a = 2, b = -4
Nếu z = i là một nghiệm của phương trình z 2 + a z + b = 0 với a , b ∈ ℝ thì a+b bằng
A. 2
B. -1
C. 1
D. -2
Nếu z = i là một nghiệm của phương trình z 2 + a z + b = 0 với a , b ∈ ℝ thì a + b bằng
A. 2
B. -1
C. 1
D. -2
Cho phương trình z 3 + a z 2 + b z + c = 0 Nếu z=1-i và z=1 là 2 nghiệm của phương trình thì a - b - c bằng
A. 2
B. 3
C. 5
D. 6
Nếu z = i là nghiệm phức của phương trình: z 2 + a z + b = 0 với (a,bϵR) thì a+b bằng
A. -1
B. -2
C. 1
D. 2
Cho phương trình z 3 + a z 2 + b z + c = 0 . Nếu z = 1 − i và z = 1 là hai nghiệm của phương trình thì a − b − c bằng (a, b, c là số thực).
A. 2
B. 3
C. 5
D. 6
Phương trình z 2 + az + b = 0 , a , b ∈ ℝ có một nghiệm phức là z = 1 + 2 i . Khi đó tổng a + b bằng
A. -4
B. 3
C. 0
D. -3