`m vdots a, m vdots b`.
`-> m vdots ab ( a, b ) = 1`.
`m vdots a, m vdots b`.
`-> m vdots ab ( a, b ) = 1`.
Người ta chứng minh được rằng:
a) Nếu a chia hết cho m và a chia hết cho n thì a chia hết cho BCNN của m và n
b) Nếu tích a.b chia hết cho c mà b và c là 2 số nguyên tố cùng nhau thì a chia hết cho c.
1)Điền vào chỗ trống
Hai Hay Nhiều Số Có UCLN Bằng 1 Thì Gọi Là ...
Trắc ngiệm
1) chọn câu ĐÚNG trong những câu sau :
A )Nếu a CHIA HẾT cho m ; b CHIA HẾT cho m ; c CHIA HẾT cho m thì a + b + c CHIA HẾT cho m
B ) Nếu a KHÔNG CHIA HẾT cho m , B VÀ C CŨNG KHÔNG CHIA HẾT CHO M thì a + b + c KHÔNG CHIA HẾT cho m
C) Nếu a+b+c CHIA HẾT cho M thì a , b , c CHIA HẾT cho m
D ) Nếu a/ KHÔNG CHIA HẾT cho m , b và c CHIA HẾT cho m thì a/ CHIA HẾT cho m
Với 2 số nguyên a và b , ta có : ( Trắc ngiệm )
a) nếu a > b thì | a | > | b |
b ) nếu a < b thì | a | < | b |
c ) nếu a = +_ ( cộng co dấu gạch dưới ) b thì | a | = | b |
d) cả a,b,c đều đúng
Trích đề thi các năm lớp 6
Chứng minh rằng: a chia hết cho b nếu a*m chia hết cho b, m và b là hai số nguyên tố cùng nhau
Chứng minh rằng:
a) Nếu a chia hết cho m, a+b chia hết cho m thì b chia hết cho m
b) Nếu a chia hết cho m, a-b chia hết cho m thì b chia hết cho m
Chứng minh rằng: Với mọi số tự nhiên n thì:
a)(n+3)(n+7)(n+8) chia hết cho 3
b)Nếu a,b có cùng số dư khi chia m thì a-b chia hết cho m và ngược lại (a,b,m thuộc N; m khác 0; b<a hoặc =a
Chứng minh rằng :
a, Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
b, Nếu a chia hết cho m , b không chia hết cho m thì (a + b) không chia hết cho m
Chứng minh rằng :
a, Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
b, Nếu a chia hết cho m , b không chia hết cho m thì (a + b) không chia hết cho m
Giải thích: Nếu tích a.b chia hết cho m, trong đó có b và m là hai số nguyên tố cùng nhau thì a chia hết cho m
Chứng minh rằng :( Chứng minh đầy đủ )
a, Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
b, Nếu a chia hết cho m , b không chia hết cho m thì (a + b) không chia hết cho m
Chứng minh rằng :( Chứng minh đầy đủ )
a, Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
b, Nếu a chia hết cho m , b không chia hết cho m thì (a + b) không chia hết cho m