\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left[\left(a^3+b^3\right)+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}=0\)
Vì a+b+c=0 \(\hept{\begin{cases}a>0\\b>0\\c>0\end{cases}}\)
Do đó: \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow a=b=c}\)
Miyuki Misaki cm ngược rồi
Ta có : a + b + c = 0
<=> a + b = -c {...........}
<=> (a + b)3 = -c3
<=> a3 + b3 + 3ab(a + b) = -c3
<=> a3 + b3 + c3 = -3ab(a + b)
<=> a3 + b3 + c3 = -3ab(-c) {vì a + b = -c}
<=> a3 + b3 + c3 = 3abc