Thêm điều kiện : x,y,z khác 0 và x+y+z khác 0
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)\(\Rightarrow\) \(\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Leftrightarrow\left(x+y\right)\left(\frac{xz+xy+yz+z^2}{xyz\left(x+y+z\right)}\right)=0\)\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)
Do đó : x + y = 0 hoặc x + z = 0 hoặc y + z = 0
Từ đó thay x,y,z vào từng trường hợp rồi suy ra đpcm
1/x+1/y+1/z=1/xyz
1/x+1/y=1/xyz-1/z
(x+y)(xy+yz+z^2)=0
(x+y)(x+z)(y+z)=0
x+y=0 suy ra x=-y
x+z=o suy ra z=x
z+y=0 suy ra y=-z
voi x=-y suy ra 1/x^2016+1/y^2016+1/z^2016=1/-y^2016+1/y^2016+1/z^2016=1/z^2016 (1)
1/x^2016+y^2016+z^2016=1/-y^2016+y^2016+z^2016 =1/z^2016 (2)
tu 1 va 2 suy ra dpcm
tinh gum minh cai chc chan bai nay dung