Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Zyz

nếu 1/x + 1/y + 1/z = 1/(x + y + z) thì 1/x^2016 + 1/y^2016 + 1/z^2016 =1/(x^2016+y^2016+z^2016)

Hoàng Lê Bảo Ngọc
22 tháng 5 2016 lúc 20:26

Thêm điều kiện : x,y,z khác 0 và x+y+z khác 0

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)\(\Rightarrow\) \(\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Leftrightarrow\left(x+y\right)\left(\frac{xz+xy+yz+z^2}{xyz\left(x+y+z\right)}\right)=0\)\(\Leftrightarrow\frac{\left(x+y\right)\left(x+z\right)\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

Do đó : x + y = 0 hoặc x + z = 0 hoặc y + z = 0

Từ đó thay x,y,z vào từng trường hợp rồi suy ra đpcm

thang
22 tháng 5 2016 lúc 20:30

1/x+1/y+1/z=1/xyz

1/x+1/y=1/xyz-1/z

(x+y)(xy+yz+z^2)=0

(x+y)(x+z)(y+z)=0

x+y=0 suy ra x=-y

x+z=o suy ra z=x

z+y=0 suy ra y=-z

voi x=-y suy ra 1/x^2016+1/y^2016+1/z^2016=1/-y^2016+1/y^2016+1/z^2016=1/z^2016 (1)

1/x^2016+y^2016+z^2016=1/-y^2016+y^2016+z^2016 =1/z^2016 (2)

tu 1 va 2 suy ra dpcm

tinh gum minh cai chc chan bai nay dung

Vũ Trung Kiên
31 tháng 1 2019 lúc 21:06

Có cách nào dễ hiểu hơn ko


Các câu hỏi tương tự
tranthithuy
Xem chi tiết
Kcjfhrbxh
Xem chi tiết
le thi thu
Xem chi tiết
Experiment Channel
Xem chi tiết
Trung Nam Truong
Xem chi tiết
Leo Messi
Xem chi tiết
pain six paths
Xem chi tiết
Hoàng Ái Vi
Xem chi tiết
Tăng Tuấn Anh
Xem chi tiết