( n2 + 3n + 1 )( n + 2 ) - n3 + 2
= n3 + 2n2 + 3n2 + 6n + n + 2 - n3 + 2
= 5n2 + 7n + 4 ( chưa thể chứng minh được )
tìm m,n,p
-3x^k ( m^2 + n x + p ) = 3x^k+2+12x^k+3^k với mọi x
( n2 + 3n + 1 )( n + 2 ) - n3 + 2
= n3 + 2n2 + 3n2 + 6n + n + 2 - n3 + 2
= 5n2 + 7n + 4 ( chưa thể chứng minh được )
tìm m,n,p
-3x^k ( m^2 + n x + p ) = 3x^k+2+12x^k+3^k với mọi x
chứng minh rằng biểu thức : n (3n - 1) - 3n(n - 2) luôn chia hết cho 5 với mọi số nguyên n
Chứng minh rằng: A= (n2 +3n + 2) (2n-1) - 2(n3 - 2n - 1) luôn chia hết cho 10 với mọi n thuộc N.
Với số nguyên nn bất kỳ, biểu thức n(3n - 2) - 3n(n + 2)n(3n−2)−3n(n+2) luôn chia hết cho bao nhiêu?
Chứng minh rằng
a) Biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
b) Biểu thức ( 2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 với mọi giá trị của m , n
làm ơn giúp mình với
CMR biểu thức n(3n-1)-3n(n-2) luôn chia hết cho 5 với mọi số nguyên n.
Cho Q=3n(n^2+2)-2(n^3-n^2)-2n^2-7n
c/m Q luôn chia hết cho 6 vs mọi số nguyên
CMR: Với mọi n thuộc Z, ta có:
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
1. Tìm n thuộc z để n3 + n2- n +5 chia hết cho n+2
2. Tìm n thuộc z để n3 + 3n -5 chia hết cho n2 +2