Lấy g=10m/s2
a, Khi khình khí cầu đứng yên
\(t=\sqrt{\dfrac{2h}{g}}=\sqrt{\dfrac{2\cdot300}{10}}=2\sqrt{15}\left(s\right)\)
b, Trong trường hợp khí cầu đang bay lên thì lúc đầu vật được ném lên cao với vận tốc đầu v0 = 5 m/s bằng vận tốc bay lên của khí cầu từ độ cao s và chuyển động chậm dần đều trong khoảng thời gian t1 lên tới độ cao lớn nhất, tại đó v = 0. Khoảng thời gian t1 được tính theo công thức:
\(t_1=\dfrac{0-5}{-10}=0,5\left(s\right)\)
Sau đó vật lại rơi tự do từ độ cao lớn nhất xuống đến độ cao 300 m trong thời gian t1 = 0,5 s, rồi tiếp tục tơi nhanh dần đều với vận tốc v0 = 5m/s từ độ cao 300 m xuống tới đất trong khoảng thời gian
ta có:\(s=v_0t_2+\dfrac{1}{2}gt_2^2\Rightarrow300=5t_2+5t^2_2\Rightarrow t_2\approx7,3\left(s\right)\)
Như vậy, khoảng thời gian chuyển động của vật sẽ bằng: t = 2t1 + t2 = 2.0,5 + 7,3 = 8,3 s.
c, Trong trường hợp khí cầu đang hạ xuống thì vật rơi nhanh dần đều với vận tốc đầu v0 = 5m/s bằng vận tốc hạ xuống của khí cầu từ độ cao s được tính theo công thức
\(s=v_0t_3+\dfrac{1}{2}gt_3^2\Rightarrow300=5t_3+5t^2_3\Rightarrow t_3\approx7,3\left(s\right)\)
Vậy khoảng thời gian chuyển động của vật sẽ bằng 7,3 (s)