Một vật có khối lượng 200g được ném từ mặt đất bay thẳng đứng lên cao với vận tốc đầu là 8m/s.Bỏ qua các lực cản.
a)tính động năng của vật tại mặt đất
b)tính độ cao vật bay lên được tối đa là bao nhiu?
c)tính vận tốc của vật tại vị trí khi thế năng bằng 2 lần động năng
d)tính độ cao của vật khi thế năng bằng 2 lần động năng
Ai giải được bài này tui cho xiền đi mua chíp chíp với bim bim
a) Động năng tại mặt đất :
\(W_đ=\dfrac{1}{2}mv_o^2=\dfrac{1}{2}.0,2.8^2=6,4\left(J\right)\)
b) \(h_{max}\Rightarrow v=0\)
Áp dụng định luật bảo toàn cơ năng:
\(W_t\left(h.max\right)=W_t\left(ban,đầu\right)\)
\(\Leftrightarrow mgh_{max}=W_đ\)
\(\Leftrightarrow h_{max}=\dfrac{W_đ}{mg}=\dfrac{6,4}{0,2.10}=3,2\left(m\right)\)
c) \(W_t'=2W_đ'\)
Áp dụng định luật bảo toàn cơ năng :
\(W_t'+W_đ'=W_đ\)
\(\Leftrightarrow2W_đ'+W_đ'=W_đ\)
\(\Leftrightarrow3W_đ'=W_đ\)
\(\Leftrightarrow\dfrac{3}{2}mv'^2=W_đ\)
\(\Leftrightarrow v'=\sqrt{\dfrac{2W_đ}{3.m}}=\sqrt{\dfrac{2.6,4}{3.0,2}}=4,62\left(m/s\right)\)
d) Tương tự câu c
\(W_t'+W_đ'=W_đ\)
\(\Leftrightarrow W_t'+\dfrac{1}{2}W_t'=W_đ\)
\(\Leftrightarrow\dfrac{3}{2}W_t'=W_đ\)
\(\Leftrightarrow\dfrac{3}{2}mgh'=W_đ\)
\(\Leftrightarrow h'=\dfrac{2W_đ}{3mg}=\dfrac{2.6,4}{3.0,2.10}=2,13\left(m\right)\)