Tính thể tích vật thể giới hạn bởi hai mặt phẳng x = 0 , x = π . Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x 0 ≤ x ≤ π là một tam giác vuông cân có cạnh huyền bằng sin x + 2 .
A.
B.
C.
D.
Tính thể tích của vật thể giới hạn bởi hai mặt phẳng x = 0 ; x = π Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x ( 0 ≤ x ≤ π ) là một tam giác vuông cân có cạnh huyền bằng sinx+2
Cho phần vật thể (T) giới hạn bởi hai mặt phẳng có phương trình x=0 và x=2. Cắt phần vật thể (T) bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x, ta được thiết diện là một tam giác đều có độ dài cạnh bằng x 2 - x . Tính thể tích V của phần vật thể (T).
Cho a; b; c lần lượt là độ dài của hai cạnh góc vuông và cạnh huyền của một tam giác vuông, trong đó c - b và c + b khác 1. Khi đó logc+ba + logc-ba bằng:
A.-2logc+ba.logc-ba.
B. 3logc+ba.logc-ba.
C.2logc+ba.logc-ba.
D. Tất cả sai
Biết rằng thiết diện của vật thể với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ( 0 ≤ x ≤ 3 ) là một tam giác đều có cạnh là 4 x + x . Khi đó thể tích của vật thể nằm giữa hai mặt phẳng x=0 ; x=3 là
Tìm độ dài các cạnh góc vuông của tam giác vuông có diện tích lớn nhất nếu tổng của một cạnh góc vuông và cạnh huyền bằng hằng số a (a>0)
Cho a, b, là độ dài hai cạnh góc vuông c, là độ dài cạnh huyền của một tam giác vuông và c - b ≠ 1 , c + b ≠ 1 . Mệnh đề nào sau đây đúng?
Cho một vật thể nằm giữa hai mặt phẳng x = 0; x = π , biết rằng mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ π cắt vật thể theo thiết diện là một tam giác đều cạnh 2 sin x . Thể tích của vật thể đó là:
A. 3 π 2
B. 2 3
C. 3 2
D. 2 π 3
Thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = π, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ π) là một tam giác đều cạnh 2 sin x
A. V = 3
B. V = 3π
C. 2 3
D. 2 π 3