Gọi (S ) là khối cầu bán kính R, (N) là khối nón có bán kính đáy R và chiều cao h. Biết rằng thể tích của khối cầu (S) và khối nón (N) bằng nhau, tính tỉ số h R .
C. 12
D. 4
Một hình nón có bán kính đáy bằng 1 và có thiết diện qua trục là một tam giác vuông cân. Tính diện tích xung quanh của hình nón.
Cho hình tru ̣có hai đáy là hai đường tròn (O;R) và (O;R') chiều cao là R 3 và hình nón có đỉnh là O¢ và đáy là đường tròn (O;R) Tính tỉ số giữa diện tích xung quang của hình trụ và diện tích xung quanh của hình nón
C. 3
D. 2
Một bình đựng nước dạng hình nón (không có đáy), đựng đầy nước. Người ta thả vào đó một khối cầu không thấm nước, có đường kính bằng chiều cao của bình nước và đo được thể tích nước tràn ra ngoài là V. Biết rằng khối cầu tiếp xúc với tất cả các đường sinh của hình nón và đúng một nửa của khối cầu chìm trong nước (hình bên). Tính thể tích nước còn lại trong bình.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1. Trên cạnh SC lấy điểm E sao cho SE=2EC. Tính thể tích V của khối tứ diện SEBD.
Cho khối chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh bằng 1, SA=1 và SA ⊥ (ABC) . Tính thể tích của khối chóp đã cho.
Cắt một khối trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a Tính diện tích toàn phần của khối trụ
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật AB=a, AD=2a, cạnh bên SA vuông góc với đáy và thể tích khối chóp S.ABCD bằng 2 a 3 3 . Tính góc tạo bởi đường thẳng SB với măṭ phẳng ( ABCD).
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a và góc BAD= 60 o AB’ hợp với đáy (ABCD) một góc 30 o Thể tích khối hộp là: