Một khối nón có thiết diện qua trục là một tam giác vuông cân và đường sinh có độ dài bằng 3 c m 2 . Một mặt phẳng đi qua đỉnh và tạo với đáy một góc 60 0 chia khối nón thành hai phần. Tính thể tích phần nhỏ hơn (Tính gần đúng đến hàng phần trăm).
A. 4,36 c m 3
B. 5,37 c m 3
C. 5,61 c m 3
D. 4,53 c m 3
Cắt một khối nón tròn xoay có bán kính đáy bằng R, đường sinh 2R bởi một mặt phẳng ( α ) qua tâm đáy và tạo với mặt đáy một góc 60 ∘ tính tỷ số thể tích của hai phần khối nón chia bởi mặt phẳng ( α ) ?
Cắt một khối nón tròn xoay có bán kính đáy bằng R, đường sinh 2R bởi một mặt phẳng α qua tâm đáy và tạo với mặt đáy một góc 60 ° tính tỷ số thể tích của hai phần khối nón chia bởi mặt phẳng α ?
Một hình nón có chiều cao 2a, bán kính đáy a 2 . Một phẳng phẳng đi qua đỉnh và tạo với mặt đáy góc 60 ° . Tính diện tích thiết diện
Để định vị một trụ điện, người ta cần đúc một khối bê tông có chiều cao h=1,5m gồm:
- Phần dưới có dạng hình trụ bán kính đáy R=1m và có chiều cao bằng 1 3 h ;
- Phần trên có dạng hình nón bán kính đáy bằng R đã bị cắt bỏ bớt một phần hình nón có bán kính đáy bằng 1 2 R ở phía trên (người ta thường gọi hình đó là hình nón cụt);
- Phần ở giữa rỗng có dạng hình trụ bán kính đáy bằng 1 4 R (tham khảo hình vẽ bên dưới).
Thể tích của khối bê tông (làm tròn đến chữ số thập phân thứ ba) bằng
Để định vị một trụ điện, người ta cần đúc một khối bê tông có chiều cao h = 1 , 5 m gồm:
- Phần dưới có dạng hình trụ bán kính đáy R = 1 m và có chiều cao bằng 1 3 h
- Phần trên có dạng hình nón bán kính đáy bằng R đã bị cắt bỏ bớt một phần hình nón có bán kính đáy bằng 1 2 R ở phía trên (người ta thường gọi là hình nón cụt);
- Phần ở giữa rỗng có dạng hình trụ, bán kính đáy bằng 1 4 R (tham khảo hình vẽ bên dưới).
Thể tích của khối bê tông (làm tròn đến chữ số thập phân thứ ba) bằng
Khối cầu (S) có tâm, đường kính AB = 2R. Cắt (S) bởi một mặt phẳng vuông góc với đường kính AB ta được thiết diện là hình tròn (C) rồi bỏ đi phần lớn hơn. Tính thể tích phần còn lại theo R, biết hình nón đỉnh I và đáy là hình tròn (C) có góc ở đỉnh bằng 120 ∘
Khối cầu (S) có tâm, đường kính AB=2R. Cắt (S) bởi một mặt phẳng vuông góc với đường kính AB ta được thiết diện là hình tròn (C) rồi bỏ đi phần lớn hơn. Tính thể tích phần còn lại theo R, biết hình nón đỉnh I và đáy là hình tròn (C) có góc ở đỉnh bằng 120 ° .
Một chiếc kem gồm hai phần: phần phía dưới là một khối nón có chiều cao gấp đôi bán kính đáy; phần phía trên là một nửa khối cầu có đường kính bằng đường kính đáy của khối nón bên dưới. Thể tích phần kem phía trên bằng 200cm3 , thể tích của cả chiếc kem đã cho bằng:
A. 400cm3
B. 300cm3
C. 50cm3
D. 350cm3