Cho khối trụ có bán kính đáy R=5. Khoảng cách hai đáy h=7 cm. Cắt khối trụ bằng một mặt phẳng song song với trục và cách trục 3cm. Diện tích của thiết diện bằng
A. 46 c m 2
B. 56 c m 2
C. 66 c m 2
D. 36 c m 2
Cho hình trụ có chiều cao h = 5, bán kính đáy r = 2. Một đoạn thẳng có chiều dài bằng 6 và có hai đầu mút nằm trên hai đường tròn đáy. Tính khoảng cách d từ đoạn thẳng đó đến trục của hình trụ.
A. d = 11 2
B. d = 2
C. d = 5 2
D. d = 4 2
Một hình trụ có bán kính đáy r = 5 c m và khoảng cách giữa hai đáy h = 7 c m . Cắt khối trụ bởi một mặt phẳng song song với trục và cách trụ 3 c m . Diện tích của thiết diện được tạo thành là:
A. S = 56 c m 2
B. S = 55 c m 2
C. S = 53 c m 2
D. S = 46 c m 2
Một hình trụ có bán kính đáy bằng 5 và khoảng cách giữa hai đáy bằng 7. Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3. Tính diện tích S của thiết diện được tạo thành.
A. S = 36
B. S = 28
C. S = 7 34
D. S = 14 34
Một hình trụ có bán kính đáy bằng 5 và khoảng cách giữa hai đáy bằng 7. Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3. Tính diện tích S của thiết diện được tạo thành.
A. S = 56
B. S = 28
C. S = 7 34
D. S = 14 34
Cho khối trụ có bán kính đáy bằng r và chiều cao bằng h. Cắt khối trụ bằng mặt phẳng (P) song song với trục và cách trục một khoảng bằng r 2 2 . Mặt phẳng (P) chia khối trụ thành hai phần. Gọi V 1 là thể tích của phần chứa tâm của đường tròn đáy và V 2 thể tích của phần không chứa tâm của đường tròn đáy, tính tỉ số V 1 V 2 .
A. V 1 V 2 = 3 π − 2 π − 2
B. V 1 V 2 = π − 2 3 π + 2
C. V 1 V 2 = 3 + 2 2
D. V 1 V 2 = 3 π + 2 π - 2
Cho khối trụ có bán kính đáy bằng r và chiều cao bằng h. Cắt khối trụ bằng mặt phẳng (P) song song với trục và cách trục một khoảng bằng r 2 2 . Mặt phẳng (P) chia khối trụ thành hai phần. Gọi V 1 là thể tích của phần chứa tâm của đường tròn đáy và V 2 thể tích của phần không chứa tâm của đường tròn đáy, tính tỉ số V 1 V 2 .
A. V 1 V 2 = 3 π − 2 π − 2
B. V 1 V 2 = π − 2 3 π + 2
C. V 1 V 2 = 3 + 2 2
D. V 1 V 2 = 3 π + 2 π − 2
Một hình trụ có diện tích xung quanh bằng 4 π thiết diện qua trục là hình vuông. Một mặt phẳng α song song với trục, cắt hình trụ theo thiết diện là tứ giác ABB’A’, biết một cạnh của thiết diện là một dây cung của đường tròn đáy của hình trụ và căng một cung 120 ° . Tính diện tích thiết diện ABB’A’?
A. 3 2
B. 3
C. 2 3
D. 2 2
Cho hình trụ có trục OO' và có bán kính đáy bằng 4. Một mặt phẳng song song với trục OO' và cách OO' một khoảng bằng 2 cắt hình trụ theo thiết diện là một hình vuông. Diện tích xung quanh của hình trụ đã cho bằng
A. 26 3 π
B. 8 3 π
C. 16 3 π
D. 32 3 π