Chọn B.
Gọi B là đỉnh hình nón,A là tâm đáy, C là một điểm thuộc đường tròn đáy.
Theo giả thiết, suy ra đường tròn đáy có bán kính
Chọn B.
Gọi B là đỉnh hình nón,A là tâm đáy, C là một điểm thuộc đường tròn đáy.
Theo giả thiết, suy ra đường tròn đáy có bán kính
Cho hình chóp S.ABC đáy ABC là tam giác vuông tại C, có cạnh AB a = , cạnh bên SA vuông góc mặt phẳng đáy và SA a = 3 . Tính thể tích V khối cầu ngoại tiếp hình chóp.
A. V= 2 2 3 3 a .
B. V= 3 4a .
C. V= 32 3 3 πa .
D. V= 4 3 3 πa .
Một hình nón có đường kính đáy là 2a π 3, góc ở đỉnh 120 ° . Thể tích của khối nón đó theo a là:
A. 2 3 π a 3 B. 3 π a 3
C. π a 3 D. π a 3 3
Một hình nón có đường kính đáy là 2a 3 , góc ở đỉnh là 120°. Tính thể tích của khối nón đó theo a.
A. 3 πa 3
B. πa 3
C. 2 3 πa 3
D. 3 πa 3
Một hình nón có đường kính đáy là 2 a 3 , góc ở đỉnh là 120°. Tính thể tích của khối nón đó theo a
A. 3 πa 3
B. πa 3
C. 2 3 πa 3
D. πa 3 3
Cho biết I = ∫ 0 π 4 sin x + 3 cos x sin x + cos x d x = πa + lnb (0<a<1; 1<b<3). Tích a.b bằng bao nhiêu?
Một hình nón có đường kính đáy là 2 a 3 , góc ở đỉnh là 120 ° . Tính diện tích xung quanh của hình nón theo a
Có ∫ 0 π 4 cos x sin x + cos x d x = π a + ln c b với a , b , c ∈ ℤ thì a 2 + b + c là:
A. 14
B. 66
C. 66 + 2
D. 70
Có ∫ 0 π 4 cos x sin x + cos x d x = π a + 1 b ln c với a , b , c ∈ ℤ thì a 2 + b + c là:
A. 14
B. 66
C. 66 + 2
D. 70
Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.