Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
SARUE BNJ

Một đội tuyển tham dự kỳ thi học sinh giỏi 3 môn Văn, Toán, Ngoại ngữ do thành phố tổ chức đạt được 15 giải. Hỏi đội tuyển học sinh giỏi đó có bao nhiêu học sinh? Biết rằng:

Học sinh nào cũng có giải.

Bất kỳ môn nào cũng có ít nhất 1 học sinh chỉ đạt 1 giải.

Bất kỳ hai môn nào cũng có ít nhất 1 học sinh đạt giải cả hai môn.

Có ít nhất 1 học sinh đạt giải cả 3 môn.

Tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần.

Cao ngocduy Cao
3 tháng 6 2022 lúc 8:45

Tham Khảo :

Gọi số học sinh đạt giải cả 3 môn là a (học sinh)

Gọi số học sinh đạt giải cả 2 môn là b (học sinh)

Gọi số học sinh chỉ đạt giải 1 môn là c (học sinh)

Tổng số giải đạt được là:

3 x a + 2 x b + c = 15 (giải).

Vì tổng số học sinh đạt 3 giải, 2 giải, 1 giải tăng dần nên a < b < c.

Vì bất kỳ 2 môn nào cũng có ít nhất 1 học sinh đạt giải cả 2 môn nên:

- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Toán.

- Có ít nhất 1 học sinh đạt giải cả 2 môn Toán và Ngoại Ngữ.

- Có ít nhất 1 học sinh đạt giải cả 2 môn Văn và Ngoại Ngữ.

Do vậy b= 3.

Giả sử a = 2 thì b bé nhất là 3, c bé nhất là 4; do đó tổng số giải bé nhất là:

3 x 2 + 2 x 3 + 4 = 16 > 15 (loại). Do đó a < 2, nên a = 1.

Ta có: 3 x 1 + 2 x b + c = 15 suy ra: 2 x b + c = 12.

Nếu b = 3 thì c = 12 - 2 x 3 = 6 (đúng).

Nếu b = 4 thì c = 12 - 2 x 4 = 4 (loại vì trái với điều kiện b < c)

Vậy có 1 bạn đạt 3 giải, 3 bạn đạt 2 giải, 6 bạn đạt 1 giải.

Đội tuyển đó có số học sinh là:

1 + 3 + 6 = 10 (bạn).


Các câu hỏi tương tự
nguyen cnah hao
Xem chi tiết
trúc thanh
Xem chi tiết
Nguyễn Huy Bình
Xem chi tiết
Nguyễn Hoàng Hà My
Xem chi tiết
Nguyễn Thị Anh Thư
Xem chi tiết
Lê Duy Minh
Xem chi tiết
Anh Đinh Ngọc
Xem chi tiết
Hồ Sỹ Sơn
Xem chi tiết
Hồ Sỹ Sơn
Xem chi tiết
Phạm Trung Kiên
Xem chi tiết