Đáp án C.
Gọi q là công sai của cấp số nhân. Vì u 2 = 1 nên suy ra u 1 = u 2 q = 1 q .
Ta có
S = u 1 1 − q = 1 q 1 − q = 1 q 1 − q , q < 1
Ta có a − b 2 ≥ 0 ⇔ a 2 + b 2 ≥ 2 a b ⇔ a + b 2 4 ≥ a b (với mọi a ; b ∈ ℝ ).
Áp dụng bất đẳng thức vừa chứng minh ở trên ta có q 1 − q ≤ q + 1 − q 2 4 = 1 4 ⇔ 1 q 1 − q ≥ 4 ⇔ S ≥ 4
Dấu bằng xảy ra khi q = 1 2 .
Vậy giá trị nhỏ nhất của S là 4 khi q = 1 2 .