\(\sqrt{x^2y^3}+y\sqrt{x^4y}-xy\sqrt{y}\)
\(=xy\sqrt{y}+x^2y\sqrt{y}-xy\sqrt{y}\)
\(=x^2y\sqrt{y}\)
\(\sqrt{x^2y^3}+y\sqrt{x^4y}-xy\sqrt{y}\)
\(=xy\sqrt{y}+x^2y\sqrt{y}-xy\sqrt{y}\)
\(=x^2y\sqrt{y}\)
bài 1:
M = \(\frac{x\sqrt{x}}{\sqrt{xy}-2y}-\frac{2x\sqrt{x}+x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}\cdot\frac{x-1}{x+\sqrt{x}-2}\)
với x > 0 , y > 0 , x # 1 , x # 4y .
1, rút gọn
2, Biết M=1 . TÌM giá trị nhỏ nhất của N =\(x^2y-2\sqrt{2}\cdot\left(3x+\sqrt{y}\right)+2020\)
xin các bạn giúp mình bài này với ạ !
Mọi người ơi, giải giúp mình bài này với
Rút gọn biểu thức:
\(\left(\sqrt{x+2\sqrt{x-2}-1}\right)\left(\sqrt{x-1}-1\right):\left(\sqrt{x}-\sqrt{3}\right)\left(x\ge2,\right)x\ne3\)
Mình đang cần gấp, nhanh lên chút nhé
A=\(\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}.\)
a) Rút gọn A
Giúp mik với mình đang cần gấp !! Thanks nhìu!!
\(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}
\)
a) Rút gọn A
b) Tìm tất cả các số nguyên dương của x để y=625 và A<0,2
GIÚP MÌNH VỚI NHA....MÌNH CẦN LẮM, CẢM ƠN TRƯỚC <3
Ai giải được bài nào thì giúp mình vs
1/ \(\hept{\begin{cases}x^3-3x^2y-4x^2+4y^3+16xy=16y^2\\\sqrt{x-2y}+\sqrt{x+y}=2\sqrt{3}\end{cases}}\)
2/\(\hept{\begin{cases}\sqrt{x^2+xy+2y^2}+\sqrt{xy}=3y\\\sqrt{x-1}+\sqrt{y-1}+x+y=6\end{cases}}\)
3/\(\hept{\begin{cases}\sqrt{x+y}+\sqrt{x+3}=\frac{1}{3}\left(y-3\right)\\\sqrt{x+y}+\sqrt{x}=x+3\end{cases}}\)
CMR với mọi x, y: \(\left(x+y\right)^2-xy+1\ge\left(x+y\right)\sqrt{3}\)
CÁC BẠN ƠI GIẢI GIÚP MÌNH BÀI NÀY VỚI
Rút gọn
a) \(\frac{\sqrt{2ab^2}}{\sqrt{162a}}\)
b) \(2y^2.\sqrt{\frac{x^4}{4y^2}}\)Với y <0
- Giải chi tiết giúp mình 2 câu này với nhé! Cảm ơn nhiều!!!
Cho x,y>0 thỏa \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)
Tính giá trị P=\(\dfrac{x+3y}{\left(\sqrt{x}+3\sqrt{y}\right)\sqrt{x+4y+4\sqrt{xy}}}\)
Mn giúp em với ạ em xin cảm ơn trước ạ<3
Giúp bài này cái đê :
Rút gọn :
\(P=\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)