(Mọi người không cần chứng minh câu a, b nha chỉ cần chứng minh câu c, d, e thôi ạ) Cho hình chữ nhật ABCD có AB>AD, AH vuông góc với BD tại H. Tia AH cắt CD và BC lần lượt tại I và K
a) C/m tam giác AHB đồng dạng với tam giác BCD
b) C/m BC.BK=BH.BD
c) C/m góc BHC bằng góc BKD
d) C/m HA^2 = HI.HK
e) C/m S hình chữ nhật ABCD=DI.BK
BÀI NÀY CÓ TRONG KTRA NÊN MỌI NGƯỜI GIÚP MÌNH GẤP VỚI XIN CẢM ƠN RẤT NHIỀU Ạ !
a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB\(\sim\)ΔBCD(g-g)