a: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>AD⊥BC tại D
Xét tứ giác AHDC có \(\hat{AHC}=\hat{ADC}=90^0\)
nên AHDC là tứ giác nội tiếp
b: AHDC nội tiếp
=>\(\hat{AHD}+\hat{ACD}=180^0\)
mà \(\hat{AHD}+\hat{MHD}=180^0\) (hai góc kề bù)
nên \(\hat{MHD}=\hat{ACD}=\hat{ACB}\)
Xét ΔOAC vuông tại A có AH là đường cao
nên \(OH\cdot OC=OA^2\)
=>\(OH\cdot OC=OB^2\)
=>\(\frac{OH}{OB}=\frac{OB}{OC}\)
Xét ΔOHB và ΔOBC có
\(\frac{OH}{OB}=\frac{OB}{OC}\)
góc HOB chung
Do đó: ΔOHB~ΔOBC
=>\(\hat{OHB}=\hat{OBC}=\hat{ABC}\)
mà \(\hat{OHB}+\hat{MHB}=\hat{OHM}=90^0\) và \(\hat{ABC}+\hat{ACB}=90^0\) (ΔABC vuông tại A)
nên \(\hat{MHB}=\hat{ACB}\)
=>\(\hat{MHB}=\hat{DHM}\)
=>HM là phân giác của góc DHB




Mn giúp có thể giúp mình câu C bài 4 và bài 5 được ko ạ, giải chi tiết 1 chút với ạ. Mình cảm ơn

