Bài 16:
Xét tg AHB có: \(HB^2=BE.BA\left(hệ.thức.lượng.trong.tg\right)\)
Xét tg AHC có: \(HC^2=CF^2.CA\left(hệ.thức.lượng.trong.tg\right)\)
=> \(\dfrac{HB^2}{AC^2}=\dfrac{BE}{FC}.\dfrac{AB}{AC}\left(1\right)\)
Xét tg ABC có:
\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\Leftrightarrow\left(\dfrac{AB}{AC}\right)^4=\dfrac{HB^2}{HC^2}\left(2\right)\)
Từ (1) và (2), ta suy ra: \(\dfrac{BE}{FC}.\dfrac{AB}{AC}=\left(\dfrac{AB}{AC}\right)^4\)
\(\Rightarrow\dfrac{BE}{FC}=\left(\dfrac{AB}{AC}\right)^3\left(đpcm\right)\)
b.
Xét tg ABC và tg EBH :
\(\widehat{A}=\widehat{E}=90^o\)
\(\widehat{B}\left(chung\right)\)
\(\Rightarrow\) \(\Delta ABC\sim\Delta EBH\left(g.g\right)\)
\(\Rightarrow\dfrac{BE}{BA}=\dfrac{BH}{BC}\)
Ta có: \(BH=\dfrac{AB^2}{BC}\Rightarrow BE=\dfrac{AB^3}{BC^2}\left(1\right)\)
Chứng minh tương tự được: \(\Delta ABC\sim\Delta FHC\left(g.g\right)\)
\(\Rightarrow\dfrac{CF}{AC}=\dfrac{HC}{BC}\)
Thay CH = \(\dfrac{AC^2}{BC}\) \(\Rightarrow CF=\dfrac{AC^3}{BC^2}\left(2\right)\)
Từ (1) và (2) ta suy ra được: \(BE.CF=\dfrac{AB^3.AC^3}{BC^4}\)
Mà AB.AC = BC.AH
nên: BC.BE.BF = \(\dfrac{AB^2.AC^3}{BC^4}.BC=\left(\dfrac{AB.AC}{BC}\right)^2=AH^3\left(đpcm\right)\)