Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

Mn giúp mik bài 8 với

loading...

Nguyễn Lê Phước Thịnh
6 tháng 10 2024 lúc 19:17

ĐKXĐ: a>0; b>0

\(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\)

\(=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)+\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)-\left(ab-1\right)}{ab-1}\)

\(=\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1+ab+\sqrt{ab}+a\sqrt{b}+\sqrt{a}-ab+1}{ab-1}\)

\(=\dfrac{2a\sqrt{b}+2\sqrt{ab}}{ab-1}=\dfrac{2\sqrt{ab}\left(\sqrt{a}+1\right)}{ab-1}\)

\(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}-\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\)

\(=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{ab}-1\right)-\left(\sqrt{ab}+\sqrt{a}\right)\left(\sqrt{ab}+1\right)+ab-1}{ab-1}\)

\(=\dfrac{a\sqrt{b}-\sqrt{a}+\sqrt{ab}-1-ab-\sqrt{ab}-a\sqrt{b}-\sqrt{a}+ab-1}{ab-1}\)

\(=\dfrac{-2\sqrt{a}-2}{ab-1}=\dfrac{-2\left(\sqrt{a}+1\right)}{ab-1}\)

\(P=\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}+\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}-1\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{ab}+1}-\dfrac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)

\(=\dfrac{2\sqrt{ab}\left(\sqrt{a}+1\right)}{ab-1}:\dfrac{-2\left(\sqrt{a}+1\right)}{ab-1}\)

\(=-\dfrac{2\sqrt{ab}\left(\sqrt{a}+1\right)}{ab-1}\cdot\dfrac{ab-1}{2\left(\sqrt{a}+1\right)}=\sqrt{ab}\)

ĐKXĐ: x>0; x<>1

\(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1-\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}+1}\)

ĐKXĐ: x>0; x<>1

\(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}=\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{4}{\sqrt{x}-1}\)

ĐKXĐ: a>=0; a<>4

\(C=\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}-4}{4-a}\)

\(=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)-\left(4\sqrt{a}-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{a+5\sqrt{a}+6-\left(a-3\sqrt{a}+2\right)-4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{a+\sqrt{a}+10-a+3\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{4}{\sqrt{a}-2}\)

ĐKXĐ: x>0; x<>1

\(D=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt[]{x}}\)

\(=\dfrac{x+\sqrt{x}-2-\left(x-\sqrt{x}-2\right)}{x-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\sqrt{x}\left(x-1\right)}=\dfrac{2}{x-1}\)


Các câu hỏi tương tự
501	Bùi Phương Chi
Xem chi tiết
eugicacandy
Xem chi tiết
30. Bảo Trâm
Xem chi tiết
Hà Lệ Thu
Xem chi tiết
Fan Sammy
Xem chi tiết
bao quoc
Xem chi tiết
quynhdovu2007
Xem chi tiết
hbvvyv
Xem chi tiết
Mến Nguyễn
Xem chi tiết
hbvvyv
Xem chi tiết