\(\frac{-2011}{2012}:\left\{\frac{1999}{2011}-\frac{2011}{2012}\right\}+\frac{1999}{2011}:\left\{\frac{1999}{2011}-\frac{2011}{2012}\right\}=?\)
Ai đó giúp mình giải nha, cảm ơn
Mọi người giải giúp mình nha, xin cảm ơn
\(\frac{-2011}{2012}:\left\{\frac{1999}{2011}-\frac{2011}{2012}\right\}+\frac{1999}{2011}:\left\{\frac{1999}{2011}-\frac{2011}{2012}\right\}\)
Rút gọn \(\left(-\frac{2011}{2012}\right)\):\(\left(\frac{1999}{2011}-\frac{2011}{2012}\right)+\frac{1999}{2011}\):\(\left(-\frac{2011}{2012}+\frac{1999}{2011}\right)\)
so sánh biết
A= \(\frac{2011\cdot2012-1}{2011\cdot2012}\) và B=\(\frac{2012\cdot2013-1}{2012\cdot2013}\)
\(\frac{\left(1+\frac{2012}{1}\right)\left(1+\frac{2012}{2}\right).......\left(1+\frac{2012}{100}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right).....\left(1+\frac{1000}{2012}\right)}\)
Rút gọn :
a/ \(A=\frac{\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}\)
b/ \(B=\frac{\left(1+\frac{2012}{1}\right)\left(1+\frac{2012}{2}\right)...\left(1+\frac{2012}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)...\left(1+\frac{1000}{2012}\right)}\)
\(-2012-596-201+496+301\)
\(=-2012+\left[\left(596-496\right)+\left(301-201\right)\right]\)
\(=-2012+\left[1+1\right]\)
\(=-2012+2\)
\(=-2010\)
Chắc vậy :V
Hoàng Thái Sơn tham khảo nha!
Tính :
1 + \(\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{2012}.\left(1+2+...+2012\right)\).
Giúp mik với nhé
Chứng minh số : \(N=0,2\cdot\left(2012^{2012}-2011^{2012}\right)\)là 1 số tự nhiên.