Xét \(n=3k\) thì :
\(3k+45⋮3\Rightarrow\left(n+45\right)\left(4n^2-1\right)⋮3\)
Xét \(n=3k+1\) thì :
\(4.\left(3k+1\right)^2-1=4.\left(9k^2+6k+1\right)-1=36k^2+24k+3⋮3\)
\(\Rightarrow\left(n+45\right)\left(4n^2-1\right)⋮3\)
Xét \(n=3k-1\) thì :
\(4.\left(3k+1\right)^2-1=4.\left(9k^2-6k+1\right)-1=36k^2-24k+3⋮3\)
\(\Rightarrow\left(n+45\right)\left(4n^2-1\right)⋮3\)
Vậy \(\left(n+45\right)\left(4n^2-1\right)⋮3\forall n\inℤ\)