a: Ta có: \(AB=\dfrac{2}{3}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{4}{9}\)
\(\Leftrightarrow HB=\dfrac{4}{9}HC\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{4}{9}=144\)
\(\Leftrightarrow HC^2=324\)
\(\Leftrightarrow HC=18\left(cm\right)\)
\(\Leftrightarrow HB=8\left(cm\right)\)
\(\Leftrightarrow AB=\sqrt{8\cdot26}=4\sqrt{13}\left(cm\right)\)