e, \(=\dfrac{1}{2}x^6y^8-\dfrac{3}{2}x^6y^8=-x^6y^8\)
f, \(=-\dfrac{1}{2}xy^2\left(\dfrac{4}{9}x^4y^2\right)+\dfrac{5}{2}x^5y^4-\dfrac{1}{4}x^4y^2.xy^2=-\dfrac{2}{9}x^5y^4+\dfrac{5}{2}x^5y^4-\dfrac{1}{4}x^5y^4=\dfrac{89}{36}x^5y^4\)
g, \(=-\dfrac{5}{2}x^5y^2+\dfrac{3}{7}.8x^3\left(\dfrac{49}{4}x^2y^2\right)-x^5y^2=-\dfrac{7}{2}x^5y^2+42x^5y^2=\dfrac{77}{2}x^5y^2\)