Ta thấy nó có dạng vô định \(\frac{0}{0}\) nên áp dụng quy tác Lopitan ta được
\(lim\frac{\sqrt[3]{1+3x}.\sqrt{1+2x}-1}{x}=lim\frac{5x+2}{\sqrt{2x+1}.\sqrt[3]{\left(3x+1\right)^2}}=2\)
Ta thấy nó có dạng vô định \(\frac{0}{0}\) nên áp dụng quy tác Lopitan ta được
\(lim\frac{\sqrt[3]{1+3x}.\sqrt{1+2x}-1}{x}=lim\frac{5x+2}{\sqrt{2x+1}.\sqrt[3]{\left(3x+1\right)^2}}=2\)
Giải các phương trình:
\(a,2x^2+1+\sqrt{8x^3+1}=0\)
\(2x+9+\sqrt{4x^2+36x+17}=\frac{8}{x}\)
\(c,\sqrt[3]{2x-1}-\sqrt{2x}=\sqrt[3]{x^3+1}-x\)
\(d,\sqrt{3x+1}-+\sqrt{6-x}+3x^2-14x-8=0\)
\(e,2\sqrt{\frac{x^2+x+1}{x+4}}+x^2-4=\frac{2}{\sqrt{x^2+1}}\)
1.\(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
2. \(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
3. \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+2\)
4.\(3x^2-x+48=\left(3x-10\right)\sqrt{x^2+15}\)
5.\(x.\frac{3x}{\sqrt{2x-3}}-\sqrt{2x-3}=2\)
Giải phương trình
a) \(\sqrt{x+3}+\sqrt{6-x}=3+\sqrt{18+3x-x^2}\)
b) \(\sqrt{x-1-2\sqrt{x-2}}-\sqrt{x+2+4\sqrt{x-2}}+3=0\)
c)\(\sqrt{5x-1}=\sqrt{3x-2}-\sqrt{2x-1}\)
d) \(2\sqrt{\frac{5x-1}{x}}=\frac{x}{3x+1}+1\)
rút gọn căn thức
\(\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{2x-\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{3x\sqrt{x}-2x+\sqrt{x}-3}{x\sqrt{x}+1}\)
Giúp e giải pt:
2x-3+\(\frac{3x-1}{\sqrt{3-2x^2}+2-x}=0\)
\(^{x^2+4x+1=\left(x+4\right)\sqrt{x^2+1}}\)
\(2\left(x-2\right)\sqrt{x-1}=3x^2+5x-4-4x\sqrt{2x-1}\)
Giải các phương trinh sau
a. \(\frac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\) b.\(\sqrt{4x^2-1}-2\sqrt{2x+1}=0\)
c\(\sqrt{x-2}+\sqrt{4x-8}-\frac{2}{5}\sqrt{\frac{25x-50}{4}=4}\)
d. \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
e. \(\frac{2x}{\sqrt{5}-\sqrt{3}}-\frac{2x}{\sqrt{3}+1}=\sqrt{5}+1\)
1) \(\frac{\sqrt{2\left(X^2-16\right)}}{\sqrt{X-3}}+\sqrt{X-3}>\frac{7-X}{\sqrt{X-3}}\)
2) \(\frac{1}{\sqrt{2X^2+3X-5}}\ge\frac{1}{2X-1}\)
3) \(\frac{1-\sqrt{1-4X^2}}{X}< 3\)
4) \(\frac{\sqrt{3X+1}-X}{2X-1}< 1\)
1. Cho P(x)=\(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+\frac{x+\sqrt{x}}{\sqrt{x}}-\frac{x-1}{\sqrt{x}+1}\)với x>0
a. Rút gọn biểu thức P(x)
b. Với x>0 tìm GTLN của \(\frac{7\sqrt{x}}{P\left(x\right)}\)
2. giải hpt \(\hept{\begin{cases}3x^3y+2x^3=1\\xy^3-2x=3\end{cases}}\)
1) Rút gọn biểu thức:
a, \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
b, \(\sqrt{4-\sqrt{7}}+\sqrt{4+\sqrt{7}}\)
2) Giải phương trình:
a, \(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right).\sqrt{6x}=2\)
b, \(\left(\sqrt{\frac{3}{x}}+\sqrt{\frac{x}{3}}+\sqrt{3x}\right).\sqrt{3x}=3\)
c, \(\sqrt{x^2+2x+1}-\sqrt{x^2-1}=0\)
d, \(\sqrt{x}+\sqrt{x+1}=\frac{1}{\sqrt{x}}\)