Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Arceus Official

\(\left(x+\sqrt{x^2+\sqrt{2015}}\right)\left(y+\sqrt{y^2+\sqrt{2015}}\right)=\sqrt{2015}\) Tính x+y

Kiệt Nguyễn
17 tháng 4 2020 lúc 8:26

Nhân cả 2 vế của đẳng thức đã cho với \(\left(x-\sqrt{x^2+\sqrt{2015}}\right)\)ta được:

\(-\sqrt{2015}\left(y+\sqrt{y^2+\sqrt{2015}}\right)=\sqrt{2015}\left(x-\sqrt{x^2+\sqrt{2015}}\right)\)(1)

Nhân cả 2 vế của đẳng thức đã cho với \(\left(y-\sqrt{y^2+\sqrt{2015}}\right)\)ta được:

\(-\sqrt{2015}\left(x+\sqrt{x^2+\sqrt{2015}}\right)=\sqrt{2015}\left(y-\sqrt{y^2+\sqrt{2015}}\right)\)(2)

Lấy (1) + (2), ta được:

\(-\sqrt{2015}\left(y+\sqrt{y^2+\sqrt{2015}}+x+\sqrt{x^2+\sqrt{2015}}\right)\)

\(=\sqrt{2015}\left(x+y-\sqrt{x^2+\sqrt{2015}}-\sqrt{y^2+\sqrt{2015}}\right)\)

\(\Leftrightarrow x+y+\sqrt{x^2+\sqrt{2015}}+\sqrt{y^2+\sqrt{2015}}\)

\(=-x-y+\sqrt{x^2+\sqrt{2015}}+\sqrt{y^2+\sqrt{2015}}\)

\(\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)

Vậy x + y = 0

Khách vãng lai đã xóa

Các câu hỏi tương tự
Funnybright
Xem chi tiết
AKPD
Xem chi tiết
Dương Nhật Minh
Xem chi tiết
Phạm Thị Thu Trang
Xem chi tiết
ngothithuyhien
Xem chi tiết
kagamine rin len
Xem chi tiết
Nguyễn Công Điệp Hoàng
Xem chi tiết
huongkarry
Xem chi tiết
Văn Đức Anh Tuấn
Xem chi tiết