\(\left[{}\begin{matrix}x+5-6=9\\x+5-6=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
|x+5|-6=9
=>|x+5|=9+6=15
=>x+5=15 hoặc x+5=-15
=>x=10 hoặc x=-20
\(\left[{}\begin{matrix}x+5-6=9\\x+5-6=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
|x+5|-6=9
=>|x+5|=9+6=15
=>x+5=15 hoặc x+5=-15
=>x=10 hoặc x=-20
Tìm x
\(a,3-x=x+1,8\)
\(b,2x-5=7x+35\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(k,7x^2-11=6x^2-2\)
\(m,5\left(x+3.2^3\right)=10^2\)
\(n,\dfrac{4}{9}-(\dfrac{1}{6^2})=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
Tìm x :
1) \(\left(-0,75x+\dfrac{5}{2}\right).\dfrac{4}{7}-\left(-\dfrac{1}{3}\right)=-\dfrac{5}{6}\)
2) \(\left(4x-9\right)\left(2,5+\dfrac{-7}{3}x\right)=0\)
3) \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
4)\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
Tìm giá trị nhỏ nhất của biểu thức:
\(T=\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+\left|x-5\right|+\left|x+6\right|+\left|x-7\right|+\left|x+8\right|+\left|x-9\right|\)
Kí hiệu [x] là số nguyên không vượt quá x. Khi đó \(\left[-\frac{12}{5}\right]+\left[\frac{5}{6}\right]+\left[-\frac{9}{4}\right]\)
Tìm số nguyên x, nếu biết
\(\frac{^{2^{4-x}}}{16^5}=32^6\)
\(\frac{3^{2x+3}}{9^3}=9^{14}\)
\(\left(-2\right)^x=-\frac{\left(-8^4\right)}{\left(-32\right)^3}\)
\(\left(-5^x\right)=\frac{25^{10}}{\left(-5\right)^{17}}\)
Tìm x, biết:
a) \(\left(-\dfrac{5}{9}\right)^{10}\) : x = \(\left(\dfrac{-5}{9}\right)^8\)
b) x ; \(\left(\dfrac{-5}{9}\right)^8\) = \(\left(\dfrac{-9}{5}\right)^8\)
c) x3 = -8
Tính giá trị các biểu thức sau (hợp lí nếu có thể):
a) \(\dfrac{8^5.\left(-5\right)^8+\left(-2\right)^5,10^9}{2^{16}.5^7+20^8}\)
b) \(\dfrac{\left(-0,25\right)^{-5}.9^4.\left(-2\right)^{-3}-2^{-2}.6^9}{2^9.3^6+6^6.40}\)
\(3,2.\frac{15}{16}-\left(75\%+\frac{2}{7}\right):\left(-1\frac{1}{28}\right)\)
\(\left(0,25+12,5-\frac{5}{16}\right):\left[12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right]\)
\(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(14,5-\frac{8}{9}:\left(35-34\frac{8}{9}\right).\frac{9}{8}\)
\(1\frac{1}{15}-\left(\frac{1}{15}+\frac{4}{9}:\frac{-2}{3}-\frac{28}{16}.\frac{6}{35}\right)-\frac{3}{10}\)
Tìm x
\(\left(4,5-2x\right)\left(-3\frac{2}{3}\right)=\frac{11}{15}\)
\(\backslash34-x\backslash=\left(-3\right)^4\)
\(\left(4x^2-1\right)\left(\text{\x}\backslash-\frac{2}{3}\right)=0\)
\(\frac{3}{5}x-\frac{1}{2}\)\(x=\frac{-7}{20}\)
Kí hiệu [x] là số nguyên ko vượt quá x
khi đó \(\left[\frac{-12}{5}\right]+\left[\frac{5}{6}\right]+\left[-\frac{9}{4}\right]=\)...