a) \(x^2-\left(2x+3\right)\left(x+5\right)+3\)
b)\(x^{20}+x+1\)
c)\(\left(x^2+y^2+1\right)^4-17\left(x^2+y^2+1\right)^2x^2+16x^4\)
Bài sau đây làm tôi không còn dám coi thường BĐT lớp 8:
Cho x, y là các số thực thỏa mãn: \(x\ge2,x+y\ge3\). Tìm Min:
\(A=x^2+y^2+\frac{1}{x}+\frac{1}{x+y}\)
Nghĩ mãi mới ra cách AM-GM (hơn 10 phút, mấy lần đầu nhóm sai!), rồi viết lại thành SOS nên 15 phút mới xong..
\(A-\frac{35}{6}=\left(x-2\right)^2\left(1+\frac{1}{4x}\right)+\left(y-1\right)^2+\frac{\left(x+y-3\right)^2}{9\left(x+y\right)}+\left[\frac{17}{9}\left(x+y\right)+\frac{7}{4}x-\frac{55}{6}\right]\)
Cách AM-GM:
\(A=\left(x-2\right)^2+\left(y-1\right)^2+\frac{1}{x}+\frac{1}{x+y}+4x+2y-5\)
\(\ge\left(\frac{1}{x}+\frac{1}{4}x\right)+\left(\frac{1}{x+y}+\frac{15}{4}x+2y-5\right)\)
\(\ge1+\left[\frac{1}{9}\left(x+y\right)+\frac{1}{x+y}\right]+\frac{17}{9}\left(x+y\right)+\frac{7}{4}x-5\ge\frac{35}{6}\)
Đẳng thức xảy ra khi \(x=2;y=1\)
\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\)
\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\)
\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\)
rut gon
a)\(\left(x-4\right)\left(x+4\right)x-\left(x^2+1\right)\left(x^2-1\right)\)
b)\(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)
c)\(x\left(x+\frac{1}{2}\right)-\left(2x-1\right)\left(x+\frac{3}{4}\right)\)
Tính
\(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(2x^2\left(x-2\right)+3x\left(x^2-x-2\right)-5\left(3-x^2\right)\)
\(\left(x-1\right)\left(x-3\right)-\left(4-x\right)\left(2x+1\right)-3x^2+2x-5\)
BT6: Tính giá trị của biểu thức
\(3,C=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)tại\(x=\dfrac{1}{2},y=-1\)
\(4,D=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)tại\(x=\dfrac{1}{2},y=-100\)
Rut gon
a)\(\left(x-4\right)\left(x+4\right)x-\left(x^2+1\right)\left(x^2-1\right)\)
b)\(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)
c)\(x\left(x+\frac{1}{2}\right)-\left(2x-1\right)\left(x+\frac{3}{4}\right)\)
giai chi tiet giup minh nhe
Cho x,y \(\in\)[0,1] .CMR
a,\(\left(1+x\right)^2\)\(\ge\)4\(x^2\)
b,\(\left(1+x+y\right)^2\)\(\ge\)4\(\left(x^2+y^2\right)\)
Rút gọn phân thức
1, \(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
2, \(\frac{x^4-y^4}{x^3+y^3}\)
3, \(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2}\)
4, \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
5, \(\frac{x^3-7x+6}{x^2\left(x-3\right)^2+4x\left(3-x\right)^2+4\left(x-3\right)^2}\)