Mình sẽ làm cách cơ bản cho bạn nhé :)
Ta có : \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
Đặt \(y=x^2+4x+8\), phương trình trở về dạng \(y^2+3xy+2x^2=0\Leftrightarrow\left(y^2+2xy+y^2\right)+\left(x^2+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+x\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(2x+y\right)=0\Leftrightarrow\orbr{\begin{cases}x+y=0\\2x+y=0\end{cases}}\)
Trường hợp 1 : Nếu x + y = 0 ta có phương trình : \(x^2+5x+8=0\) . Phương trình này vô nghiệm.Trường hợp 2 : Nếu 2x + y = 0 ta có phương trình : \(x^2+6x+8=0\Leftrightarrow\left(x+2\right)\left(x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)Vậy kết luận : Tập nghiệm của phương trình : \(S=\left\{-4;-2\right\}\)
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Rightarrow\left(x^2+4x+8\right)\left(3x+x^2+4x+8\right)+2x^2=0\)
\(\Rightarrow\left(x^2+4x+8\right)\left(x^2+7x+8\right)+2x^2=0\)
Ta có đồng thời :
\(2x^2=0\Rightarrow x=0\)
Và : \(\left(x^2+4x+8\right)\left(x^2+7x+8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+4x+8=0\left(vn\right)\\x^2+7x+8=0\end{cases}}\Rightarrow x^2+x-8x+8=0\)
\(\Rightarrow x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Rightarrow\left(x-8\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=8\\x=1\end{cases}}\)