\(\left(x^2-4x^2\right)-\left(x-2\right)^2+10\)
\(=x^2-4x^2-x^2+4x-4+10\)
\(=-4x^2+4x+6\)
\(\left(x^2-4x^2\right)-\left(x-2\right)^2+10\)
\(=x^2-4x^2-x^2+4x-4+10\)
\(=-4x^2+4x+6\)
~ học tốt nhé #Châu FAKKER
\(\left(x^2-4x^2\right)-\left(x-2\right)^2+10\)
\(=x^2-4x^2-x^2+4x-4+10\)
\(=-4x^2+4x+6\)
\(\left(x^2-4x^2\right)-\left(x-2\right)^2+10\)
\(=x^2-4x^2-x^2+4x-4+10\)
\(=-4x^2+4x+6\)
~ học tốt nhé #Châu FAKKER
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(x^2-3x=0\)
giải pt , \(\sqrt{x^4+4x^2}+\sqrt{x+x^2}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}.\)
\(x=0\)
\(x^3=0\)
\(x^3=2.0.\sqrt{0}\)
\(x^3=2x\sqrt{x}\)
\(x^3=2x\sqrt{x}\)
\(4\left(x^3-2x\sqrt{x}\right)^2=0\)
\(4\left(x^6-4x^4\sqrt{x}+4x^2x\right)=0\)
\(4x^6-16x^4\sqrt{x}+16x^2x=0\)
\(4x^6+16x^3=16x^4\sqrt{x}\)
\(16x^4+4x^5+4x^6+16x^3=16x^4+4x^5+16x^4\sqrt{x}\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(4x^4+4x^4\sqrt{x}+x^4.x\right)\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(2x^2+x^2\sqrt{x}\right)^2\)
\(2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)\)
\(x^4+x^2+4x^2+x+2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)+x^4+x^2+4x^2+x\)
\(\left(\sqrt{x^4+4x^2}+\sqrt{x^2+x}\right)^2=\left(x^4+2x^2\sqrt{x}+x\right)+9x^2\)
\(\sqrt{x^4+4x^2}+\sqrt{x^2+x}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}\)
vậy x=0 là nghiệm của pt =))
tìm x biết
a)\(x+2x+3x+4x+...+2015x=2016\times2017\)
b)\(1-3+3^2-3^3+...+\left(-3\right)^x=\frac{9^{1008}-1}{4}\)
c)\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)
d)tìm x nguyên biết \(\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|=2500\)
e) tìm x nguyên biết \(2004=\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+99x\right|+\left|x+1000\right|\)
\(\left(x^2-4x\right)^2-\left(x-2\right)^2+10=0.\)
\(\left(x-2\right)=t\Leftrightarrow x=t+2\)
thay x=t+2 ta được
\(\left\{\left(t+2\right)^2-4\left(t+2\right)\right\}^2-t^2+10=0\)
\(\left(t^2-4\right)^2-t^2+10=0\)
\(t^4-8t^2+16-t^2+10=0\)
\(t^4-9t^2+26=0\)
\(t^2=m\)
\(m^2-9m+26=0\)
\(\left(m^2-9m+\frac{81}{4}\right)-\left(\frac{81}{4}+26\right)=0\)
\(\left(m-\frac{9}{2}\right)^2-\left(\frac{81}{4}+26\right)=0\)
\(\left(m-\frac{9}{2}+\sqrt{\frac{81}{4}+26}\right)\left(m-\frac{9}{2}-\sqrt{\frac{81}{4}+26}\right)=0\)
1. \(\frac{x^3-10x^2+25x}{x^2-5x}\)\(=0\) ( đkxđ: \(x\ne0;5\))
<=> \(\frac{x\left(x-5\right)^2}{x\left(x-5\right)}=0\)<=> \(x-5=0\)<=> vô no
2. \(A=\)\(\frac{2x^2-2}{x^3-x^2-4x+4}\)\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x-2\right)\left(x+2\right)}\) ( a, đkxđ: \(x\ne1;\pm2\))
b, \(A=0\)<=> \(\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}=0\)<=> \(x=-1\)( TM) . Vậy \(A=0\Leftrightarrow x=-1\)
3. \(B=\frac{3x^2-12}{\left(x-3\right)\left(x^2+4x+4\right)}\)\(=\frac{3\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+2\right)^2}\) ( a, đkxđ: \(x\ne3,-2\))
\(b,B=0\Leftrightarrow\frac{3\left(x-2\right)}{\left(x-3\right)\left(x+2\right)}=0\Leftrightarrow x=2\left(tm\right)\). Vậy \(B=0\Leftrightarrow x=2\)
Cho \(Q=\left(\frac{2x-x^2}{2x^2+8}-\frac{2x^2}{x^3-2x^2+4x-8}\right)\left(\frac{2}{x^2}+\frac{1-x}{x}\right)\)
a)Rút gọn Q
b) Tìm x nguyên để Q nguyên
b, \(M=A-B=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\left(\frac{5}{x+\sqrt{x}-6}+\frac{1}{\sqrt{x}-2}\right)\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{x+\sqrt{x}-6}-\frac{5}{x+\sqrt{x}-6}-\frac{1\left(\sqrt{x}+3\right)}{x+\sqrt{x}-6}\)
\(=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-4\sqrt{x}+3\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)
Cho \(P\left(x\right)=x^4+ax^3+bx^2+cx+d\), trong đó a, b, c, d là hằng số.
Gia su \(P\left(1\right)=10,P\left(2\right)=20,P\left(3\right)=30\). Hãy tính \(\frac{P\left(12\right)+P\left(-8\right)}{10}\)
Giải giùm mk mấy bài nha:
Tìm x:a)\(2\left|\frac{3}{2}x-\frac{1}{4}\right|=\left|-\frac{5}{4}\right|\)
b)\(\left|2+3x\right|=\left|4x-3\right|\)
THẾ NHA!!!Giúp mk chiều nộp mà (,,T^T,,)