=>\(\left(x-1\right)^{x+2}\left[\left(x-1\right)^4-1\right]=0\)
=>(x-1)*x*(x-2)=0
=>\(x\in\left\{0;1;2\right\}\)
=>\(\left(x-1\right)^{x+2}\left[\left(x-1\right)^4-1\right]=0\)
=>(x-1)*x*(x-2)=0
=>\(x\in\left\{0;1;2\right\}\)
Tìm x biết:
a) \(\left|x+2\dfrac{1}{2}\right|=\left|3x+1\right|\)
b) \(\left|2x-6\right|+\left|x+3\right|=8\)
c) \(2.\left|x+2\right|+\left|4-x\right|=11\)
Thu gọn:
\(B=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)-\left(x^2+2\right)\left(x^2-2\right)\)
\(T=\left(x-5\right)\left(x+2\right)+3.\left(x-2\right)\left(x+2\right)-\left(3x-\frac{1}{2}\right)^2+5x^2\)
\(Q=\left(x-2\right)^3+6\left(x-1\right)^2-\left(x+1\right)\left(x^2-x+1\right)\)
Làm đc cái nào thì làm, ko bắt m.n làm cả đâu ! Làm đc hết thì mk cảm ơn!
Tìm x biết: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x+\frac{1}{20}\right|+...+\left|x+\frac{1}{110}\right|=11x\) = 11x
\(2\left|2x-6\right|=\dfrac{5}{6}-\left|x-3\right|\)
2:\(\left|x+2013\right|+\left|x+2014\right|+\left|x+2045\right|=2\)
3:\(\left|2x-1\right|=\left|x+1\right|\)
4:\(\sqrt{\left(x+\sqrt{5}\right)}+\sqrt{\left(y-\sqrt{3}\right)^2}+\left|x-y-z\right|=0\)
a, \(\text{[}\left(x-y\right)^3+3\left(x-y\right)\text{]}:\dfrac{1}{3}\left(x-y\right)\)
b, \(\left(8x^3-27y^3\right):\left(2x-3y\right)\)
c, \(\text{[}5\left(x+2y\right)^6-6\left(x+2y\right)^5\text{]}:2\left(x+2y\right)^4\)
Tìm x biết
a)\(\left|2x-3\right|-x=\)\(\left|2-x\right|\)
b)\(\left|x+3\right|+\left|x+1\right|=\)\(3x\)
c)\(2005=\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)
d)\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{20}\right|+..+\left|x+\frac{1}{110}\right|=11x\)
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\left[x\inℤ\right]\)
Tìm giá trị nhỏ nhất của biểu thức:
\(T=\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+\left|x-5\right|+\left|x+6\right|+\left|x-7\right|+\left|x+8\right|+\left|x-9\right|\)
Tìm x, biết:
\(\)|x+\(\dfrac{1}{2}\)|+|x+\(\dfrac{1}{6}\)|+\(\left|x+\dfrac{1}{12}\right|\)+\(\left|x+\dfrac{1}{20}\right|\)+...+\(\left|x+\dfrac{1}{110}\right|\)=11x