Ôn tập hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Đình Thành

\(\left\{{}\begin{matrix}x^4-4x^2+y^2-6y+9=0\\x^2y+x^2+2y-22=0\end{matrix}\right.\)

Nguyễn Việt Lâm
2 tháng 1 2019 lúc 0:37

Ấy, nhìn không kỹ nên sai sót kỹ thuật rồi, bước đặt nhân tử chung bị nhầm.

Làm lại cho chính xác hơn:

Hệ đã cho tương đương \(\left\{{}\begin{matrix}\left(x^2-2\right)^2-4+\left(y-3\right)^2=0\left(1\right)\\y=\dfrac{22-x^2}{x^2+2}\end{matrix}\right.\)

Đặt \(x^2-2=t\Rightarrow x^2=t+2\Rightarrow y=\dfrac{20-t}{t+4}\Rightarrow y-3=\dfrac{4\left(2-t\right)}{t+4}\left(2\right)\)

Thay (2) vào (1):

\(t^2-4+\dfrac{16\left(2-t\right)^2}{\left(t+4\right)^2}=0\Leftrightarrow\left(t-2\right)\left(t+2\right)+\dfrac{16\left(t-2\right)^2}{\left(t+4\right)^2}=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+2+\dfrac{16\left(t-2\right)}{\left(t+4\right)^2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-2=0\\t+2+\dfrac{16\left(t-2\right)}{\left(t+4\right)^2}=0\end{matrix}\right.\)

TH1: \(t-2=0\Rightarrow t=2\Rightarrow x^2=4\) \(\Rightarrow\left[{}\begin{matrix}x=-2;y=3\\x=2;y=3\end{matrix}\right.\)

TH2: \(t+2+\dfrac{16\left(t-2\right)}{\left(t+4\right)^2}=0\Leftrightarrow\left(t+2\right)\left(t^2+8t+16\right)+16t-32=0\)

\(\Leftrightarrow t^3+8t^2+16t+2t^2+16t+32+16t-32=0\)

\(\Leftrightarrow t^3+10t^2+48t=0\)

\(\Leftrightarrow t\left(t^2+10t+48\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=0\\t^2+10t+48=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x^2=2\) \(\Rightarrow\left[{}\begin{matrix}x=-\sqrt{2};y=5\\x=\sqrt{2};y=5\end{matrix}\right.\)

Vậy hệ đã cho có 4 cặp nghiệm:

\(\left(x;y\right)=\left(-2;3\right);\left(2;3\right);\left(-\sqrt{2};5\right);\left(\sqrt{2};5\right)\)

Nguyễn Việt Lâm
2 tháng 12 2018 lúc 10:39

\(\left\{{}\begin{matrix}\left(x^2-2\right)^2-4+\left(y-3\right)^2=0\\\left(x^2+2\right).y=22-x^2\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x^2-2\right)^2-4+\left(y-3\right)^2=0\\y=\dfrac{22-x^2}{x^2+2}\end{matrix}\right.\)

Đặt \(x^2-2=t\ge-2\)

\(\Rightarrow x^2=t+2\Rightarrow y=\dfrac{20-t}{t+4}\Rightarrow y-3=\dfrac{8-4t}{t+4}=\dfrac{4\left(2-t\right)}{t+4}\)

Thay vào pt trên ta được:

\(t^2-4+\dfrac{16\left(2-t\right)^2}{\left(t+4\right)^2}=0\Leftrightarrow\left(t-2\right)\left(t+2\right)+\dfrac{16\left(t-2\right)^2}{\left(t+4\right)^2}=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+2+\dfrac{16}{\left(t+4\right)^2}\right)=0\)

\(\Leftrightarrow t-2=0\) (do \(t+2+\dfrac{16}{\left(t+4\right)^2}>0\) \(\forall t\ge-2\) )

\(\Rightarrow t=2\Rightarrow x^2-2=2\Rightarrow x^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=3\\x=-2\Rightarrow y=3\end{matrix}\right.\)

Vậy hệ đã cho có 2 cặp nghiệm:

\(\left(x;y\right)=\left(-2;3\right);\left(2;3\right)\)


Các câu hỏi tương tự
Lô Vỹ Vy Vy
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
Lê Hào 7A4
Xem chi tiết
tran duc huy
Xem chi tiết
Shader gaming
Xem chi tiết
poppy Trang
Xem chi tiết
Linh nè
Xem chi tiết
Trần Thị Tú Anh 8B
Xem chi tiết
Ngọc Linh
Xem chi tiết