rút gọn E=\(\left(\sqrt{3+\sqrt{5}}+\sqrt{7+3\sqrt{5}}\right)\cdot\left(\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}\right)\)
Rút gọn biểu thức \(A=\frac{\sqrt{1+\sqrt{1-x^2}}\cdot\left[\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\right]}{2+\sqrt{1-x^2}}\)
Rút gọn \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
Mng cứu em bài này với ạaa
Rút gọn
\(\dfrac{x^2-\sqrt{2}}{x^4+\left(\sqrt{3}-\sqrt{2}\right)\cdot x^2-\sqrt{6}}\)
Giải phương trình:
a)\(\sqrt[3]{14-x^3}+x=2\cdot\left(1+\sqrt{x^2-2x-1}\right)\)
b) \(5-3x=\left(-125x^2+150x-41\right)\cdot\sqrt{1-x^2}\)
c)\(\sqrt{2x^2+1}+\sqrt{x^2+3x+2}=\sqrt{x^2-x+4}+\sqrt{2x^2+2x+3}\)
d) \(\sqrt{x^2+15}+2=\sqrt{x^2+8}+3x\)
e) \(\sqrt{2x^4+2}\cdot\left(\sqrt{2-x}-\sqrt{x}\right)=\left(1-x\right)\cdot\left(x^2+1\right)\)
f) \(\sqrt[3]{2037-x}-\sqrt{x-2009}=x^2-2009x-2008\)
P=\(\left(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2}{\sqrt{2}-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
a)tìm điều kiện để P có nghĩa
b)rút gọn P
c)tính giá trị của P với x=\(3+2\sqrt{2}\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\sqrt{\left(3+\sqrt{2}\right)^2}\)-\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
b) \(\sqrt{\left(\sqrt{7}-2\sqrt{2}\right)^2}\)-\(\sqrt{\left(\sqrt{7}+2\sqrt{2}\right)^2}\)
c)\(\sqrt{\left(3+\sqrt{5}\right)^2}\)+\(\sqrt{\left(3-\sqrt{5}\right)^2}\)
d) \(\sqrt{\left(2-\sqrt{3}\right)^2}\)-\(\sqrt{\left(2+\sqrt{3}\right)^2}\)
1 Tính
\(\frac{\sqrt{7}-5}{2}-\frac{6}{\sqrt{7}-2}+\frac{1}{3+\sqrt{7}}+\frac{3}{5+2\sqrt{7}}\)
2 Cho
\(A=\left(\frac{\sqrt{x}-4}{\sqrt{x}\cdot\left(\sqrt{x}-2\right)}+\frac{3}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-2}\right)\)
Rút gọn A
Tìm các giá trị nguyên của x để \(\frac{7}{A}\)là số nguyên
\(\sqrt{\frac{5\cdot\left(38^2-17^2\right)}{8\cdot\left(47^2-19^2\right)}}\)cái này rút gọn nha
\(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)cái này giải phương trình haaaaaa