\(\Leftrightarrow\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Leftrightarrow m\in\left\{0;-2\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Leftrightarrow m\in\left\{0;-2\right\}\)
cho 2 so duong x,y va x+y=1. Tim GTNN cua
M=\(\left(\frac{x-1}{x}\right)^2+\left(\frac{y-1}{y}\right)^2\)
Tim m khi
\(2-x^2\left(x^2+x+1\right)=-x^4-x^3-x^2+m\)
Tim m khi
\(2-x^2\left(x^2+x+1\right)=x^4-x^3-x^2+m\)
CMR với \(m\in N\):
a) \(\frac{4}{4m+2}=\frac{1}{m+1}+\frac{1}{\left(m+1\right)\left(2m+1\right)}\)
b) \(\frac{4}{m+3}=\frac{1}{m+2}+\frac{1}{\left(m+1\right)\left(m+2\right)+}+\frac{1}{\left(m+1\right)\left(4m+3\right)}\)
\(\left(m^3-m+1\right)^2+\left(m^2-3\right)^2-2\left(m^2-3\right)\left(m^3-m+1\right).\)
Hãy rút gọn biểu thức trên
Chứng minh rằng với mọi \(m\inℕ\), ta có :
a) \(\frac{4}{8m+5}=\frac{1}{2\left(m+1\right)}+\frac{1}{2\left(m+1\right)\left(3m+2\right)}+\frac{1}{2\left(3m+2\right)\left(8m+5\right)}\)
b) \(\frac{4}{3m+2}=\frac{1}{m+1}+\frac{1}{3m+2}+\frac{1}{\left(m+1\right)\left(3m+2\right)}\)
P/s : Giúp tớ câu này nha các cậu :33
\(\left(m^3-m+1\right)^2+\left(m^2-3\right)^2-2\left(m^2-3\right)\left(m^3-m+1\right)\)
rút gọn đa thức
giúp mính vs
Rút gọn biểu thức sau :
\(A=\frac{\left[\left(a-nh\right)^2-\left(a+nh\right)^2\right].\left[\left(y-1\right)^2-\left(y+1\right)^2\right]}{\left[\left(e-1\right)^2-\left(e+1\right)^2\right].\left[\left(m-1\right)^2-\left(m+1\right)^2\right]}\). \(\frac{ê}{u:u^2}\)
Giải và biện luận pt :
\(m\left(m-1\right)x=m^2+3m+2\left(x+1\right)\)
\(\left(1-m\right)x=m^2-1\)
\(\left(m^2-5m+6\right)x=m^2-9\)
Help Salahhh <3