1) Xét ΔAMB và ΔAMC có
AB=AC(ΔBAC cân tại A)
AM chung
BM=CM(M là trung điểm của BC)
Do đó: ΔAMB=ΔAMC(c-c-c)
Suy ra: \(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
hay AM\(\perp\)BC
Ta có: ΔAMB=ΔAMC(cmt)
nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
hay AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
3) Xét ΔABC có
H là trung điểm của AB(gt)
K là trung điểm của AC(gt)
Do đó: HK là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: HK//BC(Định lí 2 về đường trung bình của tam giác)