GIẢI PT SAU:
\(\dfrac{2x^2-5x+2}{x-1}=\dfrac{2x^2+x+15}{x-3}\)
MN GIÚP E BÀI NÀY VỚI Ạ. GHI RÕ CÁCH LÀM DÙM E VỚI Ạ.
Trong mặt phẳng với hệ trục tọa độ $Oxy$, cho elip $\left( E \right)$ có phương trình: $\dfrac{{ x^2}}{9}+\dfrac{{{y}^2}}{4}=1$. Gọi ${{F}_{1}}, \, {{F}_2}$ là hai tiêu điểm của $\left( E \right)$. Tìm điểm $M$thuộc $\left( E \right)$ sao cho góc $\widehat{{{F}_{1}}M{{F}_2}}$ bằng ${{90}^{\circ}}$.
GIẢI PT:
a) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\)
b) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\)
e) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\)
MN GIẢI BÀI NÀY GIÚP E VỚI Ạ. E ĐANG CẦN GẤP Ạ.
Giúp em giải các hệ phương trình này với
a)\(\begin{cases}x^4+2y^3-x=-\dfrac{1}{4}+3\sqrt{3}\\ y^4+2x^3-y=-\dfrac{1}{4}-3\sqrt{3}\end{cases}\)
b) \(\begin{cases} x+\dfrac{78y}{x^2+y^2}=20\\ y+\dfrac{78x}{x^2+y^2}=15\end{cases}\)
c) \(\begin{cases}\left(1-\dfrac{12}{y+3x}\right)\cdot \sqrt{x}=2\\ \left(1+\dfrac{12}{y+3x}\right)\cdot\sqrt{y}=6 \end{cases}\)
d) \(\begin{cases} \sqrt{x+1}+\sqrt[4]{x-1}-\sqrt{y^4+2}=y\\ x^2+2x(y-1)+y^2-6y+1=0\end{cases}\)
e) \(\begin{cases} \sqrt{4x^2+(4x-9)(x-y)}+\sqrt{xy}=3y\\ 4\sqrt{(x+2)(y+2x)}=3(x+3)\end{cases}\)
Trong mặt phẳng tọa độ $Oxy$, cho elip $\left( E \right):\dfrac{{ x^2}}{4}+{{y}^2}=1.$ Gọi ${{F}_{1}};{{F}_2}$ là hai tiêu điểm của $\left( E \right)$ và điểm $M\in \left( E \right)$ sao cho $M{{F}_{1}}\bot M{{F}_2}$. Tính $M{{F}_{1}}^2+M{{F}_2}^2$ và diện tích $\Delta M{{F}_{1}}{{F}_2}.$
Tìm m để HPT có nghiệm: (sd S2-4P≥0)
\(\begin{cases} x+\dfrac{1}{y}+y+\dfrac{1}{x}=5\\ x^{3}+y^{3}+\dfrac{1}{x^{3}}+\dfrac{1}{y^{3}}=15m-10 \end{cases} \)
GIẢI PT :
1) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\) (GHI RÕ ĐK)
2) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\) (GHI RÕ ĐK)
3) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\) (GHI RÕ ĐK)
MN GIÚP E BÀI NÀY VỚI Ạ. E ĐANG CẦN GẤP Ạ.
với x,y,z>0 và \(x+y+z\ge\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
chứng minh đẳng thức \(x+y+z\ge\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\)
GIẢI PT :
1) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\)
2) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\)
3) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\)
GIẢI PHƯƠNG TRÌNH VÀ GHI RÕ ĐIỀU KIỆN CỦA CÁC CÂU.
MN GIÚP E BÀI NÀY VỚI Ạ. E ĐANG CẦN GẤP Ạ.
Trong mặt phẳng với hệ trục tọa độ Oxy cho elip (E) có phương trình chính tắc \(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\). Độ dài trục lớn của elip (E) là:
A. 10 B. 25 C. 9 D. 6