a> Vì tam giác ABC vuông tại A => góc BAC = 90 hay BAD = 90
Vì DE \(\perp\) BC => BED =90
Xét tứ giác ABED có :
BAD +BED = 180
mà góc ở vị trí đối diện
=> Tứ giác ABED nội tiếp
=> Tâm của đường tròn nội tiếp tứ giác ABED là trung điểm của cạnh BD
b> Vì góc BAC = 90 => ABC + ACB = 90 *
Vì AK \(\perp BC\) =>KAB + ABK =90 **
Từ * và ** => ABK = ACB
Mà góc ABK =góc BHK < tứ giác ABED nt>
=> góc ACB = góc BHK
c> Xét tam giác BKH và tam giác BDC có:
góc BHK = góc ACB cmt
góc DBC Chung
=> tam giác BKH đồng dạng vs tam giác BDC <g-g>
=> \(\dfrac{BK}{BD}=\dfrac{HK}{CD}\)
<=> \(\dfrac{BK}{HK}=\dfrac{BD}{CD}\)
=> BK.CD = HK . BD