a)
f(x) + h(x) = g(x)
\( \Rightarrow x^4 - 3x^2 + x-1 \) + h(x) = \(x^4 - x^3 + x^2 +5\)
\(\Rightarrow \) h(x) = \(( x^4 - x^3 + x^2 + 5 ) - ( x^4 - 3x^2 + x-1 )\)
\(\Rightarrow \) h(x) = \(x^4 - x^3 + x^2 + 5 - x^4 + 3x^2 - x +1\)
\(\Rightarrow\) h(x) = \(( x^4-x^4 ) + ( -x^3 ) + ( x^2 + 3x^2 ) + ( 5+1)\)
\(\Rightarrow\) h(x) = \(4x^2 - x^3 +6\)
Vậy h(x) = \(4x^2 - x^3 +6\)
b) f(x) - h(x) = g(x)
\(\Rightarrow \) \(x^4 - 3x^2 +x-1\) - h(x) = \(x^4 - x^3 + x^2-1\)
\(\Rightarrow\) h(x) = \((x^4 - 3x^2 +x-1)\) - \((x^4 - x^3 + x^2 +5 )\)
\(\Rightarrow\) h(x) = \(x^4 - 3x^2 + x-1 - x^4 + x^3 - x^2 - 5\)
\(\Rightarrow\) h(x) = \(( x^4-x^4 ) + x^3 + ( -3x^2 - x^2 ) + ( -1-5 )\)
\(\Rightarrow\) h(x) = \(x^3 - 4x^2 -6\)
Vậy h(x) = \(x^3 - 4x^2 -6\)