Ta có : \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}\)
Mà : \(\left(\frac{2014}{2015}+\frac{1}{2014}\right)>1;\left(\frac{2015}{2016}+\frac{1}{2014}\right)>1;\frac{2014}{2014}=1\)
Nên : \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}\)\(>1+1+1=3\)
Ta có:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)\)\(+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}\)
Mà:\(\left(\frac{2014}{2015}+\frac{1}{2014}\right)>1:\left(\frac{2015}{2016}+\frac{1}{2014}\right)>\)\(1:\frac{2014}{2014}=1\)
Nên:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)\)\(+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}>1+1+1=3\)