Gọi số có ba chữ số là abc, xóa chữ số hàng trăm thì được số bc
=> abc = 7 x bc
100 a + 10b + c = 7 x (10b + c)
100a + 10 b + c = 70 b + 7 c
100 a = 60b + 6 c (Trừ cả hai vế của dòng trên đi 10b và c)
50 a = 30b + 3c (chia cả hai vế của dòng trên cho 2)
50 a = 3 (10b +c) (*)
=> 50 a phải chia hết cho 3 => a chia hết cho 3 (vì số 50 không chia hết cho 3 nên thừa số a phải chia hết cho 3 để tích 50 a chia hết cho 3)
=> a = 0 hoặc 3 hoặc 6 hoặc 9
Trường hơp 1: a =0 (loại vì số abc trở thành số hai chữ số)
Trường hợp 2: a = 3, thay vào (*) => 50 x 3 = 3 (10b +c)
=> 10b + c = 50 => b và c là thương và dư của phép chia 50 chia cho 10.
Ta có 50 chia 10 được 5 dư 0 => b = 5, c = 0
=> Số cần tìm là 350
Trường hợp 3: a = 6, thay vào (*) => 50 x 6 =3 (10b +c)
=> 10b + c = 100
Vì b ≤ 9, c ≤ 9 => 10b + c ≤ 10.9 + 9 =99 <100
=> Không có chữ số b và c nào thỏa mãn 10b + c = 100
Trường hợp 4: a =9, cũng lý luận như trường hợp a = 6 ở trên
Kết luận: Số tìm được là 350
So do la 350
Ta goi so do la x
Ta se co:
TH1: 7x=100+x
TH2: 7x=200+x
TH3: 7x=300+x
Th4,5,6,7,8,9
Co Th3 thoa man so can tim la 350
Gọi abc là số tự nhiên phải tìm.
Theo đầu bài ta có:
abc = bc x 7
Tức là:
100 x a +bc = 7 x bc
100 x a = 6 x bc
50 x a = 3 x bc
50 x a = bc x 3
Suy ra :
a= 3 ; bc =50
vậy số phải tìm là 350
Và cách dài như khăn lẽ của NOBITA KUN nữa nha !!!
Gọi số tự nhiên phải tìm là: abc
Theo đầu bài ta có: abc = bc x 7
Vậy : 100 x a +bc = 7 x bc
100 x a = 6 x bc
50 x a = 3 x bc
50 x a = bc x 3
vậy a= 3 ; bc =50 Vậy số phải tìm là 350
Gọi số cần tìm là abc
( a , b > 0 ; a, b , c \(\le9\))
Khi đó, số mới là bc
Ta có: bc x 7 = abc
bc x 7 = a x 100 + bc
bc x ( 7 - 1 ) = a x 100
bc x 6 = a x 100
(*) bc x 3 = a x 50 ( giảm mỗi vế 2 lần )
Vì bc \(\le\)99 => bc x 3 \(\le\)297
Vì bc x 3 \(\le\)297 => a x 50 \(\le\)297
Để a x 50 \(\le\)297 => a < 6
Mà a khác 0 => a = 1 ; 2 ; 3 ; 4 ; 5
Bạn thay từng trường hợp vào (*) nhé,ra 350
click vào chữ màu xanh này đi khi xóa đi chữ số hàng trăm của một số tự nhiên có 3 chữ số thì số đó giảm đi 5 lần . tìm số có 3 chữ số? | Yahoo Hỏi & Đáp
Goi so do la abc (co gach tren dau nhung luoi)
Co abc =7bc => 100a = 6bc => c = 0 ( do 100a tan cung la 0) => 100a = 60b =>10a = 6b => a=3, b=5
abc = 350
Gọi số cần tìm là abc (b,c ∈ N ; a ∈ N*)
Vì khi xóa đi chữ số hàng trăm của một số tự nhiên có 3 chữ số thì số đó giảm đi 5 lần
......~> 5.bc = abc
....<~> 5.bc = 100.a + bc
....<~> 4.bc = 100.a
....<~> bc = 25.a
mà bc là số có 2 chữ số và 25.a lớn nhất là 99
~> a ∈ { 1;2;3 }
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* a = 1
......~> bc = 25
......~> số cần tìm abc là 125
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* a = 2
......~> bc = 25.2 = 50
......~> số cần tìm abc là 250
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* a = 3
.......~> bc = 25.3 = 75
.......~> số cần tìm abc là 375
Do đó 125 hoặc 250 hoặc 375 là các số cần tìm
Gọi số có ba chữ số là abc, xóa chữ số hàng trăm thì được số bc
=> abc = 7 x bc
100 a + 10b + c = 7 x (10b + c)
100a + 10 b + c = 70 b + 7 c
100 a = 60b + 6 c (Trừ cả hai vế của dòng trên đi 10b và c)
50 a = 30b + 3c (chia cả hai vế của dòng trên cho 2)
50 a = 3 (10b +c) (*)
=> 50 a phải chia hết cho 3 => a chia hết cho 3 (vì số 50 không chia hết cho 3 nên thừa số a phải chia hết cho 3 để tích 50 a chia hết cho 3)
=> a = 0 hoặc 3 hoặc 6 hoặc 9
Trường hơp 1: a =0 (loại vì số abc trở thành số hai chữ số)
Trường hợp 2: a = 3, thay vào (*) => 50 x 3 = 3 (10b +c)
=> 10b + c = 50 => b và c là thương và dư của phép chia 50 chia cho 10.
Ta có 50 chia 10 được 5 dư 0 => b = 5, c = 0
=> Số cần tìm là 350
Trường hợp 3: a = 6, thay vào (*) => 50 x 6 =3 (10b +c)
=> 10b + c = 100
Vì b ≤ 9, c ≤ 9 => 10b + c ≤ 10.9 + 9 =99 <100
=> Không có chữ số b và c nào thỏa mãn 10b + c = 100
Trường hợp 4: a =9, cũng lý luận như trường hợp a = 6 ở trên
Kết luận: Số tìm được là 350