Lời giải:
Gọi số cần tìm là $\overline{abcd}$ với $a,b,c,d$ là số tự nhiên với $a\neq 0$ và $0\leq a,b,c,d\leq 9$
Theo bài ra ta có:
$\overline{abcd}+\overline{ab}=4618$
$\overline{ab}\times 100+\overline{cd}+\overline{ab}=4618$
$\overline{ab}\times 101+\overline{cd}=4618$
$\overline{ab}\times 101=4618-\overline{cd}> 4618-99$
$\overline{ab}\times 101> 4519$
$\overline{ab}> 44,74$
$\Rightarrow a\geq 4$
Mặt khác, nếu $a\geq 5$ thì $\overline{abcd}\geq 5000$. Khi đó tổng của số ban đầu và số cũ không thể là $4618$
Vậy $a=4$
Ta có:
$\overline{4b}\times 101+\overline{cd}=4618$
$(40+b)\times 101+\overline{cd}=4618$
$40\times 101+b\times 101+\overline{cd}=4618$
$b\times 101+\overline{cd}=578$
$b\times 101=578-\overline{cd}< 578$
$\Rightarrow b< 5,72$
$b\times 101=578-\overline{cd}> 578-99=479$
$\Rightarrow b> 4,74
Do đó $b=5$
$\overline{cd}=578-b\times 101=578-5\times 101=73$
Vậy số cần tìm là $4573$