(x-y)(x+y)(x^2+y^2)
\(\left(x^2+y^2\right)\left(x^2-y^2\right)\)
Dựa vào hằng đẳng thức thứ 3 : (A + B)(A - B) = A2 - B2
=> \(\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2\right)^2-\left(y^2\right)^2=x^4-y^4\)
( x2 + y2 )( x2 - y2 )
= ( x2 )2 - ( y2 )
= x4 - y4
\(\left(x^2+y^2\right)\left(x^2-y^2\right)\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=x^4-y^4\)
\(\left(x^2+y^2\right)\left(x^2-y^2\right)\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=x^4-y^4\)