\(K=\frac{a}{\sqrt{a^4+7}}+\frac{b}{\sqrt{b^4+7}}+\frac{c}{\sqrt{c^4+7}}\)
a,b,c>0
\(ab+bc+ca=3\)
gtln
Cho a,b,c>0 và ab+bc+ca=3 chứng minh \(\frac{a}{a^2+7}+\frac{b}{b^2+7}+\frac{c}{c^2+7}\le\frac{3}{8}\)
cho ab+bc+ca=3 cm a/a^2+7 + b/b^2+7 + c/c^2+7 <= 3/8
Với a,b,c > 0 thỏa mãn \(ab^2+bc^2+ca^2=3\) . CMR:
\(\sqrt[3]{a+7}+\sqrt[3]{b+7}+\sqrt[3]{c+7}\le2\left(a^4+b^4+c^4\right)\)
Cho a , b , c > 0 . Chứng minh rằng :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}+\frac{7}{16}\cdot\frac{max\left\{\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\right\}}{ab+bc+ca}\)
`a,b,c` là các số thực không âm thỏa mãn `a^3 +b^3 +c^3 =3`. Tìm min và max \(P=\dfrac{a}{7-3bc}+\dfrac{b}{7-3ca}+\dfrac{c}{7-3ab}\)
Cho a,b,c>0 ;a+b+c=1. CMR: \(ab+bc+ca+abc\le\frac{7}{28}\)
Cho a, b, c là 3 số không âm thỏa mãn a + b + c = 1. Chứng minh rằng: \(ab+bc+ca\le\frac{2}{7}+\frac{9abc}{7}\)
cho a, b, c là 3 số không âm thỏa mãn a+b+c=1. Chứng minh rằng \(ab+bc+ca\le\frac{2}{7}+\frac{9abc}{7}\)