The function f is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(5)=12f(5)=12? Answer:
Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 + x-x^2f(x)=2+x−x 2 . What is the value of f(-3)f(−3)? Answer: Câu 5 Given a real number aa and a function ff is defined on the real numbers by f(x)=-6\times|3x|-4f(x)=−6×∣3x∣−4. Compare: f(a)f(a) f(-a)f(−a) Câu 6 There are ordered pairs (x;y)(x;y) where xx and yy are integers such that \dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8} x 5 + 4 y = 8 1 Câu 7 Given a negative number kk and a function ff is defined on the real numbers by f(x)=\dfrac{6}{13}xf(x)= 13 6 x. Compare: f(k)f(k) f(-k)f(−k) Câu 8 Given a positive number kk and a function ff is defined on the real numbers by f(x)=\dfrac{-3}{4}x+4f(x)= 4 −3 x+4. Compare: f(k)f(k) f(-k)f(−k). Câu 9 A=(1+2+3+\ldots+90) \times(12 \times34-6 \times 68):(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6})=A=(1+2+3+…+90)×(12×34−6×68):( 3 1 + 4 1 + 5 1 + 6 1 )= Câu 10 Given that \dfrac{2x+y+z+t}{x}=\dfrac{x+2y+z+t}{y}=\dfrac{x+y+2z+t}{z}=\dfrac{x+y+z+2t}{t} x 2x+y+z+t = y x+2y+z+t = z x+y+2z+t = t x+y+z+2t . The negative value of \dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z} z+t x+y + t+x y+z + x+y z+t + y+z t+x is
given that (x+y):(5-z):(y+z):(9+y)=3:1:2:5
the value of x is
Split the number 678 into three parts. If the first part and the second part are in the ratio of 5:7; the second part and the third part are in the ratio of 3:11
then the value of the second part is
The function g is defined on the real numbers by g(x) = 2x + x(x+3)g(x)=2x+x(x+3). What is the value of g(2)g(2)?
Answer:
Câu 2
The function p is defined on the real numbers by p(q) =\dfrac{q^2-q}{(q+1)q}p(q)=(q+1)qq2−q. What is the value of 10\times p(-11)10×p(−11)?
Answer:
Câu 3
The function p is defined on the real numbers by p(q) = 3-\left| {3q-7} \right|p(q)=3−∣3q−7∣. What is the value of p(-2)p(−2)?
Answer:
Câu 4
The function f is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-3)=6f(−3)=6?
Answer:
Câu 5
Given a negative number k and a function ff is defined on the real numbers by f(x)=\dfrac{6}{13}xf(x)=136x.
Compare: f(k)f(-k)
f(-k)f(−k)
Question 1:
Fill the suitable number in the following blank?
.\(343=\)_____\(3\)
Question 2:
The positive value of such that \(\left|2x-3\right|+7=16\) is _______
Question 3:
Given a function \(g\left(x\right)=2\sqrt{x-7}\) . Find the value of \(g\left(11\right)\)?
Answer: The value of \(g\left(11\right)\) is ._________
Question 4:
Find the value of such that \(0,008=\left(0,2\right)^x\).
Answer: . \(x=\)_________
Question 5:
Given a function\(g\left(x\right)=\frac{2}{3-x}\) . Find the value of .\(g\left(1\right)+g\left(2\right)\)
Answer: The value of \(g\left(1\right)+g\left(2\right)\) is ._______
Question 6:
Suppose that \(\frac{7y-x}{2x+y}=\frac{1}{3}\) then the ratio of \(x\) to \(y\) is .________
Question 7:
If \(x\) is directly proportional to \(y\) with the scaling factor is 8, \(z\) is directly proportional to \(x\) with the scaling factor is 4.
Then \(z\) is directly proportional to \(y\) with the scaling factor is______ .
Question 8:
The maximum value of \(A=\frac{6}{2.\left(x-3\right)^2+3}\) is .______
Question 10:
Suppose that\(\frac{7-3x}{5}=\frac{y+4}{3}=\frac{6x-y}{5}\) . Find the ratio of \(y\) to \(x\)
Answer: The ratio of \(y\) to \(x\) is .______________-
(write your answer by decimal in simplest form)
The value of \(\frac{9^4\cdot27^3}{81^4}-\frac{2^{11}\cdot4^5}{6^{10}}\) is .........
if x/3-1/y=1/6( with x and y are two integer numbers)
then the maximum value of y-x is ....
Giup mik với
Ex 1:A one-way bus ticket cost 25 dollars. A two- way bus ticket cost 35 dollars. A cashier collected 560 dollars altogether from the sale of 20 tickets. How many one- way bus tickets were sold?
Ex2: the sum of a,b and c is 14. If 9a+8b+6c=101, what is the value of 2a+b=c?
THANKS